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Abstract: There are several very useful formulas, which give the cycle indices of
the binary operation of the sum, product, composition and power group of M and H
in terms of cycle indices of M and H. One very useful binary operation on groups,
which has not been exploited, is the semidirect product.

Suppose G = M ⋊H, a semi direct product; the question is: how can we express
the cycle index of G in terms of the cycle indices of M and H? This work partially
answers this question by considering the cycle indices of some particularly semidirect
product groups; namely – Frobenious groups.

AMS Subject Classification: —???—
Key Words: cycle indices, Frobenious groups

1. Introduction

A Frobenius group is a group G acting on a set X, transitively, in such a way
that the stabilizer H of a point is nontrivial, but only the identity fixes two or
more points. That means that H ∩

(

xHx−1
)

= {1}, if x ∈ G \ H. Define M∗ =

G \
⋃

{

xHx−1 : x ∈ G
}

, the set of all elements in G having no fixed points. Then

M = M∗ ∪ {1} is a normal subgroup of G. Furthermore G = M ⋊ H.

Received: June 9, 2010 c© 2010 Academic Publications
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340 M. Munywoki, I. Kamuti, B. Kivunge

If M and H are permutation groups with cycle indices ZM and ZH respectively
and if ∗ is some binary operation on permutation groups then a fundamental problem
is the determination of a formula for ZM∗H in terms of ZM and ZH . To this end a
number of results have already been obtained as discussed in [4], [5], [7].

Kamuti [11], gave a method for deriving the cycle index of Frobenious groups.
In this work we give an alternative method of deriving the same and also express
the cycle index of G in terms of cycle indices of M and H.

2. Preliminary Definitions and Results

Let X be a set and G be a group. We say that G acts on the left on X if for each
x ∈ G and each x ∈ X there corresponds a unique element gx ∈ X such that for
each x ∈ X and g1, g2 ∈ G:

(i) (g1g2)x = g1(g2x).

(ii) For any x ∈ X, 1x = x where 1 is the identity in G.

Similarly a group acts on a set on the right by writing g on the right.

If a finite group G acts on a set S with n elements, each x ∈ G corresponds to a
permutation σ of S, which can be written uniquely as a product of disjoint cycles.
If σ has α1 cycles of length 1, α2 cycles of length 2, . . . , αn cycles of length n, we
say that σ and hence x has cycle type α1, α2, α3, . . . , αn

Theorem 2.1. (see [2]) Let the cycle type of a permutation σ be (j1, j2, . . . , jn),

then the cycle type of σk is
(

j
(1,k)
1/(1,k), j

(2,k)
1/(2,k), . . . , j

(n,k)
1/(n,k)

)

.

Remark 2.2. If a finite group G acts on a set X, the permutation σ corre-
sponding to g ∈ G has cycles of lengths less than or equal to the order of g.

If a finite group G acts on a set X, |X| = n and g ∈ G has cycle type

(j1, j2, . . . , jn), we define the monomial of g to be mon(g) =
∏

k

tjk

k , where tk, k =

1, 2, . . . , n are distinct commuting indeterminates. The cycle index of the action of
G on X is the polynomial (say over the rational field Q) in t1, t2, . . . , tn given by

Z(G) = |G|−1
∑

g∈G

mon(g). If G has conjugacy classes K1,K2, . . . ,Km with gi ∈ Ki,

then Z(G) = |G|−1
m

∑

i=1

|Ki|mon(g).

An element g ∈ G generates the group G and say g is a generator for G if
G =< g > i.e G = {gn : n ∈ Z}. Let G act on the set X and x ∈ X, then the orbit

of x is given by OrbG(x) = {gx : g ∈ G}. The action of a group G on the set X is
said to be transitive if for each pair x, y ∈ X there exists g ∈ G such that gx = y;In
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ON THE CYCLE INDICES OF FROBENIOUS GROUPS 341

in other words if the action of G on X has only one orbit. The stabilizer of x in G
is the set StabG(x) = {g ∈ G gx = x}. The stabilizer forms a subgroup of G called
the isotropy group of x in G denoted by Gx

Theorem 2.3. (see [13, p. 76]) Let G be a finite group acting transitively on
a set X. Let x ∈ X and H = StabG(x). Then the action of G on X is equivalent to
the action by multiplication on the set of cosets of H in G.

If G is a group with subgroups H and K, then G is said to be the semidirect
product of K by H denoted by G = K ⋊ H if:

(1) H < G and K ⊳ G;

(2) HK = G;

(3) H ∩ K = {1}.

If G act on the set X and g ∈ G, then Fix(g) = {x : gx = x}.

Theorem 2.4. (see [8]) Let G be a finite transitive permutation group acting

on the cosets of it’s subgroup H. If g ∈ G and [G : H] = n then
ϕ(g)

n
=

|Cg ∩ H|

|Cg|

Theorem 2.5. (see [2]) Let g be a permutation with cycle type α1, α2, α3,
. . . , αn, then:

( i) The number ϕ(gl) of 1-cycles in gl is Σi/liαi;

( ii) αl =
1

l

∑

i/l

ϕ
(

gl/i
)

µ(i).

3. Main Results: The Cycle Index of Frobenious Groups

If G is a Frobenious group, then the action of G on X is equivalent to the action of
G on S = G/H, the set of left cosets of G, the action being by left multiplication.
Furthermore |S| = |G/H| = |M |.

Now, the cycle index of G is derived as follows. Let x ∈ G, then either x ∈ M or
else x is in a conjugate of H. So it’s enough to determine mon(x) in Case I x ∈ M
and in Case II x ∈ H.

Case I. If x 6= 1 is in M , then ϕ(x) = 0. Since M consists of 1 and all elements
of G with no fixed points, |C∗ ∩ H| = 0.

Now if x 6= 1 is in M , then αl = 0 if l 6= |x| where αl is the number of cycles

of length l in x and if l = |x|, then αl =
1

l

∑

i/l

ϕ(xl/i)µ(i). But ϕ(xl/i) = 0, unless
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342 M. Munywoki, I. Kamuti, B. Kivunge

i = 1, in which case ϕ(xl) = ϕ(1) = |M |. Therefore since l = |x|, then αl =
|M |

|x|
and

mon(x) = t
|M |/|x|
|x| . If x = 1, then ϕ(x) = |M | and mon(x) = t

|M |
1 . Thus elements of

M contribute
1

|G|

∑

{

t
|M |/|x|
|x| : x ∈ M

}

to the cycle index of G.

Case II. If x = 1, ϕ(x) = ϕ(1) = |M | and mon(x) = t
|M |
1 . If x 6= 1, then ϕ(x) = 1

(from the definition of a Frobenious group). Let |C∗ ∩ H| = a then |C∗| = a|M |. If
l 6= |x| then

αl =
1

l

∑

i/l

ϕ(xl/i)µ(i) =
1

l

∑

i/l

µ(i) = 0,

since ϕ(xl/i) = 1, for i 6= 1 and also
∑

i/l

µ(i) = 0 if l 6= 1 from Theorem 2.5.

If l = |x|, we have

αl =
1

l

∑

i/l

ϕ(xl/i)µ(i) =
1

l



|M | +
∑

i/l

µ(i), i 6= 1



 ,

since x 6= 1 and i 6= 1 implies l 6= 1 and
∑

i/l

µ(l) = µ(1) +
∑

i/l

µ(i), i 6= 1.

But µ(1) = 1 and
∑

i/l

µ(l) = 0, l 6= 1. Therefore
∑

i/l

µ(i) = −1, i 6= 1 and thus

αi =
1

l
[|M | − 1]. So α|x| =

|M | − 1

|x|
and mon(x) = t1t

(|M |−1)/|x|
|x| . We conclude that

since H has distinct conjugates which intersect trivially i.e at 1, the contribution of

element of G/M =
⋃

{Hx\I : x ∈ G} to ZG is

|G|−1
[

|M |
∑

{mon(x) : x 6= 1 ∈ H}
]

= |G|−1
[

|M |
∑

{mon(x) : x ∈ H} − |M |t
|M |
1

]

= |G|−1
[

|M |
∑

{

t1t
(|M |−1)/|x|
|x| : x ∈ H

}

− |M |t
|M |
1

]

=
|M |

|G|

∑

{

t1t
(|M |−1)/|x|
|x| : x ∈ H

}

−
|M |

|G|
t
|M |
1 .

But
|G|

|H|
= |M | which implies

|M |

|G|
=

1

|H|
= |H|−1. This gives

|H|−1
∑

{

t1t
(|M |−1)/|x|
|x| : x ∈ H

}

− |H|−1t
|M |
1 .

Combining Case I and Cases II gives
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ON THE CYCLE INDICES OF FROBENIOUS GROUPS 343

ZG,M=S = |G|−1
∑

{

t
|M |/|x|
|x| : x ∈ M

}

+ |H|−1
∑

{

t1t
(|M |−1)/|x|
|x| : x ∈ H

}

− |H|−1t
|M |
1 .

If our aim is to express the cycle index of Frobenius group G in terms of the
cycle index of M and H then we have

ZG,M=S = |G|−1
∑

{

t
|M |/|x|
|x| : x ∈ M

}

+ |H|−1
∑

{

t1t
(|M |−1)/|x|
|x| : x ∈ H

}

− |H|−1t
|M |
1 .

But

|G|−1 =
1

|H||M |
and ZM,S =

1

|M |

∑

{

t
|M |/|x|
|x| : x ∈ M

}

.

Therefore

ZG,S =
1

|H||M |

∑

{

t
|M |/|x|
|x| : x ∈ M

}

+ |H|−1
∑

{

t1t
(|M |−1)/|x|
|x| : x ∈ H

}

− |H|−1t
|M |
1 ,

and
ZG,S = |H|−1ZM,S + ZH,S − |H|−1Z1,S .
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