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A B S T R A C T

Electron–electron interaction is the origin of the many-body problems usually encountered in physics and
chemistry. Helium atom and other two-electron systems are the simplest many-body systems in nature.
The Schrödinger equation even for such simple systems cannot be solved exactly without resorting to
approximate methods. In this study, we have suggested a symmetry-dependent analytical all-electron potential
for helium atom derived using an alternative multipole expansion, a variational technique, and a mean-field
approximation. We have calculated the non-relativistic groundstate energy for helium atom to be −2.90422284.
The suggested all-electron potential has a local Coulomb potential with embedded nuclear charge screening
effect in the leading term of the multipole potential. A non-local component of the potential emanates from
the higher-order angular momentum terms of the multipole series expansion. The higher-order multipole
interactions are fully included through the exchange correlation processes where the interacting electrons
exchange their angular momenta via the operator. With the derived potential, the effects of the local long-
range and non-local short-range components, and the finite nuclear mass corrections are tested. Our results
are in reasonable agreement with literature values. Indeed with the finite nuclear mass correction, we obtain
the groundstate energy of helium atom to be −2.90382769.
Introduction

Helium atom and other two-electron systems are the simplest many-
body systems in nature. The dominant interactions in many-body sys-
tems are the electron-nuclei and the electron–electron interactions.
Within the fixed nuclear geometry, with the position of the nucleus
taken as the point of reference in the coordinate system, the electron-
nuclei interaction and the kinetic energy operators in the Schrödinger
equation are usually much simpler to deal with because they are sepa-
rated in spatial and momentum coordinates respectively. The electron–
electron interactions, on the other hand, are quite challenging to deal
with because of the correlations in the spatial coordinates. These
challenges often lead to the use of approximation methods in solving
the Schrödinger equations for the many-body systems encountered
in atomic and molecular physics, condensed matter physics, nuclear
physics, and quantum chemistry.

It is already known that the electron–electron interaction is the
origin of many interesting phenomena in materials like the metal–
insulator transitions, magnetic ordering, and superconductivity [1].
Significant progress has since been made in developing techniques to
deal with the electron correlation problem. Hartree–Fock method is
usually a good starting point in solving the many-body problem, but it
is not good enough for chemistry and spectroscopy of an 𝑛-electron sys-
tems [2]. Random Phase Approximation methods are emerging rapidly

E-mail address: ejobunga@tum.ac.ke.

as effective validation tools for semi-local density functional com-
putations. These methods have the ability to capture approximately
static correlations in molecules [3,4]. Hylleraas method [5–7] which
employs explicitly correlated wavefunctions is quite accurate but com-
putationally very expensive and hence tractable for helium atom and
other small quantum systems only. Configuration Interaction (CI) is
also an alternative method which is quite accurate depending on the
size and quality of configurations included, but it is computationally
demanding. Density Function Theory (DFT) [8] is currently the method
of choice in computational quantum chemistry and condensed matter
physics owing to its use of single-particle non-interacting Hamiltonian
and Kohn–Sham orbitals which yield reasonably accurate groundstate
energies [9]. Despite employing minimal computational resources, the
challenge with DFT rests with evaluating the unknown exchange cor-
relation functional [10] and a poor description of excited states [11].

Besides other theoretical methods, a pseudopotential can also be
used as an approximation for the simplified description of complex
atoms, molecules, and other quantum systems. The use of pseudopoten-
tials was first introduced by Fermi [12]. Hellmann [13] subsequently
developed a pseudopotential model for atoms which has been ex-
tensively used in atomic scattering [14]. The use of pseudopotential
method in the many-body problems is convenient, computationally less
expensive and has the potential of revealing the underlying processes
in the interaction dynamics. Pseudopotentials can be conveniently
adapted to the codes for single-electron systems.
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An optimized effective potential (OEP) method, as an alternative to
the use of pseudopotentials, employs an effective potential for a single
particle but carefully designed using mean-field theories to incorporate
the dynamical features of the other electrons in a many-body prob-
lem [15]. The optimized potential bears all the practical advantages
of a pseudopotential in addition to its ability to describe a quantum
system in a more realistic way. The use of the effective potentials is also
justified by the understanding that when more accurate energy levels
are obtained, the wavefunctions obtained from the resulting boundary
conditions will closely approximate the exact values when solving the
atomic and molecular problems [16]. With the energy eigenvalues
and the corresponding wavefunctions determined, other spectroscopic
properties of a system, for example, bond lengths, ionization potentials,
dissociation energies, and polarizabilities, can also be determined [17].

In this study, an optimized symmetry-dependent single-particle all-
electron potential for helium atom of the form

𝑉 (𝑟𝑖) = −
(𝑍 − 𝜎𝑙𝑖 )

𝑟𝑖
(1)

with the screening parameter 𝜎𝑙𝑖 , originally suggested by Slater and
Zener [16,18–20] in their pioneering works, is derived using our al-
ternative multipole expansion [21–25], a variational technique, and
a mean-field approximation. The higher-order non-spherical terms of
the electron–electron multipole interaction account for the exchange
correlation effects which are non-local and short-range. In Eq. (1),
𝑟𝑖 and 𝑙𝑖 refer to the radial co-ordinate and the orbital angular mo-
mentum of the 𝑖th electron respectively. The screening parameter 𝜎𝑙𝑖 ,
which is a function of 𝑙𝑖, is obtained by summing over the 𝑙 and

quantum numbers of the electron–electron interaction term in the
amiltonian operator. The analytical separation of spatial coordinates

s achieved through a mean-field approximation of the higher-order
ultipole terms. The Schrödinger equation for helium atom is solved
sing the derived all-electron potential in this study and the results
ompared with literature values. This paper should be considered as
n extension to our previous study [21] which solved the Schrödinger
quation for helium atom using the lowest-order approximation of the
lectron–electron interaction. The goal of the paper is therefore to
evelop a systematic method of including the higher-order multipole
nteractions, not incorporated in Ref. [21].

heory

The time-independent Schrödinger equation for a two-electron sys-
em is given by

𝛹 (𝑟𝑖, 𝑟2) = 𝐸𝛹 (𝑟𝑖, 𝑟2), (2)

here H is the non-relativistic Hamiltonian operator of the system, 𝐸
s the total energy of the system corresponding to the Hamiltonian, and
(𝑟𝑖, 𝑟2) is the two-electron wavefunction. The Hamiltonian, in atomic
nits and in fixed nuclear coordinates, can be expressed as

= 1
2
[

p21 + p22
]

−𝑍
[

1
𝑟1

+ 1
𝑟2

]

+ 1
|𝑟1 − 𝑟2|

, (3)

where the first term corresponds to the kinetic energy operators, the
second term corresponds to the interaction between nucleus and each
of the atomic electrons, and the last term corresponds to the electron–
electron interaction between the two atomic electrons.

In our previous articles [21–25], we formulated the alternative
multipole expansion of the Coulomb repulsion term,

1
∣ 𝑟𝑖 − 𝑟𝑗 ∣

= (𝑟2𝑖 − 2𝑟𝑖 𝑟𝑗 𝑥 + 𝑟2𝑗 )
−1∕2

= 4𝜋
√

𝑟2 + 𝑟2

∞
∑

𝑙=0

+𝑙
∑

𝑚=−𝑙
𝑗𝑙(𝑟𝑖, 𝑟𝑗 ) 𝑌 𝑚∗

𝑙 (𝑟𝑖) 𝑌 𝑚
𝑙 (𝑟𝑗 ),

(4)
2

𝑖 𝑗
where 𝑥 = cos 𝜃, 𝜃 is the angle between vectors 𝑟𝑖 and 𝑟𝑗 , the unit
vector �̂� specifies the angular coordinates of vector 𝑟, and

𝑗𝑙(𝑟𝑖, 𝑟𝑗 ) =
∑

𝑘=𝑙,𝑙+2,…

(2𝑘 − 1)!!
(𝑘 − 𝑙)!! (𝑘 + 𝑙 + 1)!!

(

𝑟𝑖𝑟𝑗
𝑟2𝑖 + 𝑟2𝑗

)𝑘

(5)

is a spherical Bessel-like function. For 𝑙 = 0, the first term of the series
is unity. We use the function in Eq. (5) to express the single-electron
interaction potential for a two-electron system as

𝑉 (𝑟𝑖, 𝑟𝑗 ) = −𝑍
𝑟𝑖

+ 𝛾𝑙𝑖
1

∣ 𝑟𝑖 − 𝑟𝑗 ∣

= −𝑍
𝑟𝑖

+ 𝛾𝑙𝑖
4𝜋

√

𝑟2𝑖 + 𝑟2𝑗

∑

𝑙,𝑚
𝑗𝑙(𝑟𝑖, 𝑟𝑗 ) 𝑌 𝑚∗

𝑙 (𝑟𝑖) 𝑌 𝑚
𝑙 (𝑟𝑗 ),

(6)

here the parameter

𝑙𝑖 =
1 + 𝛿1

2 + 𝛿1 + 𝛿2
(7)

is a general symmetry-dependent partitioning fraction [21,24] rep-
resenting the proportion of the electron–electron interaction energy
corresponding to 𝑖th-electron. The parameters in Eq. (7) are empirically
determined to be

𝛿1 =
{

0 if 𝑙𝑖 = 0
𝑙𝑖
√

𝑙𝑖 if 𝑙𝑖 ≠ 0
(8)

and

𝛿2 =
𝑙𝑣

2(2𝑙𝑣−1)
(9)

with 𝑙𝑖 representing the orbital angular momentum quantum number
of the 𝑖th-electron in the atom and 𝑙𝑣 representing the orbital angular
momentum of the groundstate valent electron in the case of an arbitrary
many-electron system. For helium atom, 𝑙𝑣 = 0.

In the empirical determination of Eq. (7), the suggested partitioning
is argued on the basis that the two interacting electrons share the
electron–electron interaction energy, not on equal basis, but with the
sharing fractions determined by the proportion of each of their intrinsic
energies [21]. The interacting electrons are assumed to be exhibiting
quantum harmonic oscillations with each of their intrinsic energies
given by

𝜖𝑖 =
[

𝑙𝑖 +
1
2

]

ℏ𝜔, (10)

where 𝑙𝑖 is a discrete quantum number corresponding to the orbital
ngular momentum of the harmonic oscillator, ℏ is the Planck’s con-
tant divided by 2𝜋, and 𝜔 is the fundamental angular frequency of

oscillations of the electrons. Consequently, the partitioning fraction
corresponding to the 𝑖th-electron becomes

𝛾𝑙𝑖 =
𝜖𝑖

𝜖𝑖 + 𝜖𝑗
, (11)

which simplifies to the form given by Eq. (7). The empirical task is
then reduced to the determination of the explicit forms of 𝛿𝑖 as given
by Eqs. (8) and (9).

The single-electron interaction potential given by Eq. (6) can then
be rewritten in multipole moments as

𝑉 (𝑟𝑖, 𝑟𝑗 ) =
∞
∑

𝑙=0

𝑙
∑

𝑚=−𝑙

∞
∑

𝑘=𝑙,𝑙+2,…
𝑉 𝑘
𝑙,𝑚(𝑟𝑖, 𝑟𝑗 ) (12)

ith
0
0,0(𝑟𝑖, 𝑟𝑗 ) = −𝑍

𝑟𝑖
+ 𝛾𝑙𝑖

1
√

𝑟2𝑖 + 𝑟2𝑗
(13)

as the leading-order term of the multipole potential and

𝑉 𝑘
𝑙,𝑚(𝑟𝑖, 𝑟𝑗 ) = 4𝜋 𝛾𝑙𝑖 𝛽

𝑘
𝑙

𝑟𝑘𝑖 𝑟
𝑘
𝑗

2 2 𝑘+ 1
𝑌 𝑚∗
𝑙 (𝑟𝑖) 𝑌 𝑚∗

𝑙 (𝑟𝑗 ) (14)

(𝑟𝑖 + 𝑟𝑗 ) 2



Results in Physics 40 (2022) 105825E.O. Jobunga

s
l

𝑉

s

e

𝑉

f

𝐴
t
q
𝑙
t
p
a

a
g
a

𝜎

w
r
s
t

a
e

⟨

o
i
E
a
q
b
𝛼

⟨

t
o

o
e
t
b

𝜀

for the higher-order terms of the multipole potential with 𝛽𝑘𝑙 repre-
enting the coefficients in the power series in Eq. (5). Subjecting the
owest-order multipole term 𝑉 0

0,0 to the optimization condition,

𝜕𝑉 0
0,0

𝜕𝑟𝑖
= 0, (15)

leads to the potential terms

𝑉 0
0,0(𝑟𝑖) = −𝑍

𝑟𝑖
+ 𝛾𝑙𝑖

3

√

𝑍
𝛾𝑙𝑖

𝑟𝑖

𝑘
𝑙,𝑚(𝑟𝑖, 𝑟𝑗 ) = 4𝜋 𝛾𝑙𝑖

𝛽𝑘𝑙 3

√

𝑍
𝛾𝑙𝑖

𝑟𝑖

(

𝑟𝑖𝑟𝑗
𝑟2𝑖 + 𝑟2𝑗

)𝑘

𝑌 𝑚∗
𝑙 (𝑟𝑖) 𝑌 𝑚

𝑙 (𝑟𝑗 ),

(16)

as shown in appendix 𝐴1, with the spatial coordinates completely
eparated in the lowest-order term. Since 𝐹 = −∇⃗𝑉 , where 𝐹 is the

net force acting on a body and 𝑉 is the potential energy function for
that body, the optimization condition is equivalent to requiring that the
forces associated with the leading-order interaction to be vanishing.

To simplify Eq. (16) further, We then utilize a mean-field approxi-
mation and a summation over the 𝑘-index (as shown in appendix 𝐴2) to
valuate the symmetry-dependent single-electron multipole potential

(𝑟𝑖) =
∞
∑

𝑙=0

𝑙
∑

𝑚=−𝑙
𝑉 𝑚
𝑙 (𝑟𝑖), (17)

or the two-electron system where

𝑉 0
0 (𝑟𝑖) = −

(

𝑍 − 𝛾𝑙𝑖 𝐵
0
0 (𝑍) 3

√

𝑍
𝛾𝑙𝑖

)

𝑟𝑖
,

𝑉 𝑚
𝑙 (𝑟𝑖) = 𝛾𝑙𝑖 𝐵

𝑚
𝑙 (𝑍) 3

√

𝑍
𝛾𝑙𝑖

exp
[

− 𝑙𝑍𝑟𝑖
(𝑙𝑖+1)(𝑙𝑖−𝑙+1)

]

𝑟𝑙+1𝑖

𝛿𝑙𝑖 ,𝑙𝑗+𝑙𝛿𝑚𝑖 ,𝑚𝑗+𝑚,

(18)

and the coefficient

𝐵𝑚
𝑙 (𝑍) =

(2𝑙𝑖 − 𝑙 + 2)!
(2𝑙𝑖 − 2𝑙 + 2)!

(

2𝑍
𝑙𝑖 − 𝑙 + 1

)(2𝑙𝑖−2𝑙+3)

×
[

(𝑙𝑖 + 1)(𝑙𝑖 − 𝑙 + 1)
(2 + 2𝑙𝑖 − 𝑙)𝑍

]2𝑙𝑖−𝑙+3
𝐴𝑚
𝑙 ⟨𝑗𝑙(𝑟𝑖, 𝑟𝑗 )⟩.

(19)

The angular factors 𝐴𝑚
𝑙 in Eq. (19), evaluated in Eq. (38) in appendix

2, arise when the corresponding double integral for the correlated
wo-electron is solved. Hydrogenic orbitals with angular momentum
uantum number 𝑙′ and principal quantum number 𝑙′ + 1, where
′ = 𝑙𝑖 or 𝑙𝑗 , have been used in Eq. (18) as the trial wavefunctions
o solve the non-local exchange integral. The higher-order multipole
otentials 𝑉 𝑚

𝑙 (𝑟𝑖) can then be added perturbatively to increase the
ccuracy of the single-electron potential.

The summation of all orders of the multipole potential in Eqs. (17)
nd (18) simplify to a fully analytical single-electron potential function
iven by Eq. (1) where the electron screening parameter 𝜎𝑙𝑖 is evaluated
s

𝑙𝑖 = 𝛾𝑙𝑖
3

√

𝑍
𝛾𝑙𝑖

∞
∑

𝑙=0

+𝑙
∑

𝑚=−𝑙
𝐵𝑚
𝑙 (𝑍)

exp
[

− 𝑙𝑍𝑟
(𝑙𝑖+1)(𝑙𝑖−𝑙+1)

]

𝑟𝑙𝑖
𝛿𝑙𝑖 ,𝑙𝑗+𝑙𝛿𝑚𝑖 ,𝑚𝑗+𝑚. (20)

One can see that our derived potential has a local long-range
Coulomb potential part (𝑙 = 0) and a non-local short-range exchange
correlation potential component (𝑙 ≠ 0) that scales with radial distance
(𝑟𝑖) from the nucleus. The charge screening parameter, if all the non-
relativistic interactions are included, can be seen to be partly constant
and partly varies as a decaying exponential function scaled by the radial
distance 𝑟𝑖 raised to power 𝑙.

With the potential given by Eq. (17), the Hamiltonian given by
Eq. (3) is fully separable and the non-relativistic single-electron Hamil-
tonian can then be written as

ℎ (𝑟 ) =
𝑝2𝑖 + 𝑉 (𝑟 ) (21)
3

∞ 𝑖 2 𝑖
within the infinite nuclear mass approximation. With the finite nuclear
mass correction, the Hamiltonian becomes

ℎ(𝑟𝑖) = ℎ∞(𝑟𝑖) −
1

𝑀𝑖𝑜𝑛
ℎ∞(𝑟𝑖) (22)

here 1∕𝑀𝑖𝑜𝑛 = 1.3606048 × 10−4 is the electron-helium nuclear mass
atio. The influence of the nuclear mass in Eq. (22) reduces to a mass
caling parameter which linearly scales all the energy eigenvalues in
he same way.

Within the independent particle Hamiltonian given by Eqs. (21)
nd (22), the energy eigenvalues of a two-electron system can then be
valuated as [21,22]

𝐸𝛼𝛼′ ⟩ = ⟨𝛹 (𝐪𝑖,𝐪𝑗 )|H|𝛹 (𝐪𝑖,𝐪𝑗 )⟩ =
{

4 𝜀𝛼𝛼′ if 𝛼 = 𝛼′

𝜀𝛼𝛼 + 𝜀𝛼′𝛼′ if 𝛼 ≠ 𝛼′
(23)

using the total Hamiltonian, H =
∑2

𝑖=1 ℎ(𝑟𝑖), and an anti-symmetric
determinant expansion,

𝛹 (𝐪𝑖,𝐪𝑗 ) =
1
√

2

[

𝜙𝛼(𝐪𝑖)𝜙𝛼′ (𝐪𝑗 ) − 𝜙𝛼′ (𝐪𝑖)𝜙𝛼(𝐪𝑗 )
]

, (24)

f the total wavefunction of the two-electron system, where 𝐪 = (𝑟, 𝑠)
ncorporates both the spatial and the spin coordinates respectively. In
q. (23), 𝜀𝛼𝛼 = ⟨𝜙𝛼|ℎ(𝑟𝑖)|𝜙𝛼⟩ is the spin averaged energy eigenvalue of
single electron orbital, with an eigenfunction 𝜙𝛼(𝑟𝑖) and a unique

uantum number 𝛼 = {𝑛𝑖, 𝑙𝑖, 𝑚𝑖}. The factor 4 in Eq. (23) arises from
oth exchange and permutation symmetry consideration for states with
= 𝛼′. In our simplification, we have used

↑ | ↑⟩ = ⟨↓ | ↓⟩ = 1 and ⟨↑ | ↓⟩ = ⟨↓ | ↑⟩ = 𝑖 (25)

o evaluate the spin integrals noting that our separable Hamiltonian
perator is free of spin. The imaginary number 𝑖 =

√

−1 is used as
defined in complex numbers. The set {↑, ↓} consists of the spin-up and
spin-down states respectively. The two electrons are considered to be
indistinguishable in the treatment. For the other cases where 𝛼 ≠ 𝛼′,
the inner electron sees the unscreened nuclear charge 𝑍 while the
uter electron sees the screened nuclear charge as a result of the inner
lectron. The infinite nuclear mass energy eigenvalue, corresponding to
he principal quantum number 𝑛, for the inner electron can therefore
e computed as a hydrogenic eigenvalue

𝑛 = −
𝑍2

eff

2𝑛2
(26)

with unscreened effective nuclear charge 𝑍eff = 𝑍, whereas that for
the outer electron can also be computed in a similar way but with a
screened effective nuclear charge 𝑍eff = 𝑍 − 𝜎. For a helium atom with
one electron considered to be in the 1𝑠 state and the other electron
occupying an excited state 𝛼′, 𝜀1𝑠 = −2.00000, which is equal to the
infinite nuclear mass groundstate energy of helium ion, since the inner
electron is assumed to be unshielded. The computation in Eq. (26) can
be evaluated analytically for a spatially independent nuclear charge
screening parameter, as is the case for spherical approximation when
only the 𝑙 = 0 term in Eq. (20) is considered.

For comparison purposes, we have also included results calculated
using a derived central potential [22,23]

𝑉𝑐𝑒𝑛(𝑟𝑖) = −𝑍
𝑟𝑖

+ ⟨𝑗0⟩

[𝑍 𝑓 (𝑟𝑖 ,𝑟𝑗 )
2

]3∕5

𝑟𝑖
(27)

where the function

𝑓 (𝑟𝑖, 𝑟𝑗 ) =
𝑟2𝑖

𝑟2𝑖 + 𝑟2𝑗
(28)

is the radial partitioning fraction. The expectation value

⟨𝑓 (𝑟𝑖, 𝑟𝑗 )
3
5
⟩ ≈

⎛

⎜

⎜

⎜

⎜

1 +
exp

[

√

5
3 ln

√

5
3 −

√

5
3

]

𝑍2𝑟2𝑖

⎞

⎟

⎟

⎟

⎟

− 3
5

(29)
⎝ ⎠



Results in Physics 40 (2022) 105825E.O. Jobunga
is approximately optimized by evaluating the integral using a trial
function for hydrogenic system in the 1𝑠 state and the Stirling’s ap-
proximation, ln𝑁! ≈ (𝑁 ln𝑁 −𝑁).

Results and discussion

An ab initio analytical all-electron separable potential for two-
electron atoms or ions is presented in Eq. (17). Higher orders of the
multipole expansion series of the electron–electron interaction are sys-
tematically included in the potential. In the derivation, an empirically
determined partitioning fraction and an optimization procedure has
been used to express the lowest-order term of the electron–electron
interaction as a function of a single-electron radial distance. Subse-
quently, a mean-field approximation has been used to include the
effects of the higher-order multipole interactions. The mean-field ap-
proximation employs a root mean value in evaluating the spherical
Bessel-like functions emanating from the electron–electron interaction.
Also, the hydrogenic trial functions have been used to evaluate the non-
local potentials. The results evaluated using the symmetry-dependent
partitioning fractions are compared with the results calculated using a
radially-dependent partitioning fraction, given by Eq. (27), and with
literature values [26]. Analytically calculated results, evaluated using
Eq. (26) within the spherical approximation, are also presented.

The effect of electron–electron interaction term on the single-
electron potential can be seen, from Eqs. (1) and (20), to reduce
to a well defined screening parameter that depends on the nuclear
charge 𝑍, orbital angular momentum 𝑙𝑖 and the radial distance 𝑟𝑖 of
the screened electron, as well as the multipole orders 𝑙 and 𝑚 of the
electron–electron interaction operator. From Eq. (18), the 𝑙 = 0 term
of the multipole potential can be seen to be a Coulombic long-range
interaction from our derivation while the higher order non-spherical,
𝑙 ≠ 0, terms can be seen to be short-range in nature and equivalent
to the non-local exchange correlation potentials. From the derived
short-range potentials, the multipole polarizabilities and the cut-off
parameters can be explicitly determined.

The derived potential is consequently used in a B-spline code to
solve the Schrödinger equation for helium atom numerically. The
Schrödinger equation is also solved analytically using Eqs. (20) and
(26), within the spherical approximation of the electron–electron in-
teraction, to elucidate the effects of the short-range terms of the
potential.

The quality of the energy eigenvalues obtained using the lowest-
order 𝑉 0

0,0(𝑟) potential given by Eq. (16), the multipole-order 𝑉ℎ(𝑟)
potential given by Eq. (17), as well as the multipole-order potential
with finite nuclear mass correction 𝑉𝑓𝑛𝑚(𝑟) of the Hamiltonian given
by Eq. (22) are tested.

Table 1 shows our non-relativistic energy results (in hartrees) for the
lowest-order potential (𝑉 0

0,0), the lowest- plus higher-order multipole
potential (𝑉ℎ), and the lowest- plus higher-order multipole potential
with finite nuclear mass corrections (𝑉𝑓𝑛𝑚) in comparison with ana-
lytical results (𝑉0), values obtained using a central potential (𝑉𝑐𝑒𝑛),
and some literature values [26]. The results correspond to the states
1𝑠𝑛𝑙, where 𝑛 takes the values of the lowest five principal quantum
numbers in ascending order, for each total orbital angular momentum
quantum number 𝐿. It can be observed that our lowest-order (𝑉 0

0,0)
results are lower but comparable to the literature values for all the
energy eigenvalues shown in the table. This is contrary to Hartree–Fock
approximation which yields an upper limit in the energy eigenvalues.

The addition of the higher-order terms of the multipole potential
leads to a good agreement of our 𝑉ℎ groundstate results with the liter-
ature value. The calculated groundstate energy eigenvalue shows some
significant difference when the local (𝑙 = 0) higher-order multipole po-
tential 𝑉ℎ corrections are included. The present calculated groundstate
energy eigenvalue −2.904222848 can be hypothesized to be the infinite
nuclear mass non-relativistic limit of the groundstate energy eigenvalue
4

for helium atom within the mean-field approximation employed in this
work. It is important to note that, from the selection rule imposed in
the derived potential, the spherically symmetric states are only affected
by the spherically symmetric multipole potential.

Non-spherical states, on the other hand, can benefit from both the
spherical and non-spherical multipole potential provided that 𝑙 ≤ 𝑙𝑖 and
𝑚 ≤ 𝑚𝑖, where 𝑙 and 𝑚 are the orbital angular momentum and the
projection quantum numbers of the multipole operator while 𝑙𝑖 and
𝑚𝑖 are the orbital angular momentum and the projection quantum
numbers of the screened atomic electron respectively. The difference
between our calculated value and the expected groundstate energy
may be attributed to the relativistic effects. Indeed if the finite nuclear
mass corrections are included, we get −2.903827𝐸ℎ. Besides the 𝑠 and
𝑝 states, our results with the finite nuclear mass corrections included
tends to be higher than the experimental and other literature data. We
recognize that the finite nuclear mass corrections are in the same order
of magnitude with other relativistic interactions and should therefore
treated together. The effects of relativistic and other higher order
interactions shall be probed further in our subsequent works.

The significant difference between our 𝑉ℎ results, with the higher
multipole-order terms included and without the finite nuclear mass
correction, and the reference values stems majorly from 𝐿 = 0 states.
Our calculated energies for the 𝐿 = 0 states are significantly lower
than the corresponding literature data. Our calculated energies for the
𝐿 = 1 and 𝐿 = 7 states are also slightly lower than the reference data.
However, for 2 ≤ 𝐿 ≤ 5 states, our calculated values are slightly higher
than the literature values. We get the best agreement with literature
values for 𝐿 = 6 states. We can attribute the discrepancy in results to
the derived symmetry-dependent all-electron potential method used in
this work. To validate the accuracy of the numerical results and to test
the effects of the non-local interactions, we included the analytically
calculated infinite nuclear mass (𝑉0) results in Table 1. The analytical
calculations are evaluated using Eq. (26) and with the values of the
effective nuclear charge given by Table 2.

The analytical results are only feasible within the spherical approx-
imation (𝑙 = 0) of the multipole expansion series. The numerically
calculated (𝑉ℎ) values, on the other hand, have been obtained without
the spherical approximation and with an expansion of angular momen-
tum in the range 0 ≤ 𝑙 ≤ 4 in the multipole series for converged results.
Using the analytical results, one can determine the influence of the
non-local short-range potentials in the calculated energy eigenvalues.

Except for the 2𝑝 and 4𝑓 states where the non-local interactions are
relatively significant, it can be seen that the disparity between local
and non-local terms in the calculated results in Table 1 manifests at
the fourth decimal place for low-lying states for each non-spherical
symmetry. Their significance decays as the principal quantum number
increases. Within the non-relativistic limit, these non-local short-range
potentials can be neglected. The derived potential can consequently
be reasonably approximated by the spherically symmetric terms of the
electron–electron interactions only, unless one is interested in probing
the effects of the non-local short-range interactions further. This has
the additional advantage that the Schrödinger equation for helium
atom can be evaluated fully analytically, using the suggested symmetry-
dependent potential, within the spherical approximation as can be seen
in Table 1 results. However, the role of the short-range potentials may
still be important especially in removing the energy degeneracy of the
𝑑 and 𝑔 states with the same principal quantum number as can be
observed in the table.

From the results obtained, it can also be seen that the effect of the
higher-order terms of the multipole potential is more significant for the
groundstate eigenvalue, and less significant for the excited states. The
effect of the finite nuclear mass correction leads to be better description
of the groundstate. It, however, distorts the agreement between our
results and the literature values for 𝐿 ≥ 2 singly excited states.

In attempting to investigate further the disparity between our sym-
metry dependent all-electron potential results and the reference values,

we included calculations generated by an improved central potential,
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Table 1
Some energy eigenvalues (in 𝐸h) for the states of helium atom, five lowest principal quantum numbers for each symmetry
𝐿, calculated using the derived non-relativistic lowest-order (𝑉 0

0,0) interaction, lowest- plus higher-order (𝑉ℎ) interactions, and
the lowest- plus higher-order interactions with finite nuclear mass correction (𝑉𝑓𝑛𝑚). The calculations have been done with
the projection quantum number 𝑚𝛼 = 0 for each of the orbitals. The results are compared with our analytically (𝑉0) calculated
values within the spherical approximation using Eq. (26), with the values calculated using a central potential (𝑉𝑐𝑒𝑛) expressed
in Eq. (27), and with the non-relativistic reference values for helium atom [26].
State 𝑉 0

0,0 𝑉ℎ 𝑉𝑓𝑛𝑚 𝑉0 𝑉𝑐𝑒𝑛 Ref.

𝐿 = 0 −2.91031 −2.90422 −2.90382 −2.90422 −2.90357 −2.90372
−2.18189 −2.18151 −2.18121 −2.18151 −2.14661 −2.14597
−2.08084 −2.08067 −2.08038 −2.08038 −2.06151 −2.06127
−2.04547 −2.04537 −2.04510 −2.04537 −2.03367 −2.03358
−2.02910 −2.02904 −2.02876 −2.02120 −2.02151

𝐿 = 1 −2.13481 −2.13367 −2.13338 −2.13441 −2.12691 −2.12384
−2.05991 −2.05950 −2.05922 −2.05973 −2.05605 −2.05514
−2.03370 −2.03350 −2.03322 −2.03360 −2.03143 −2.03106
−2.02156 −2.02145 −2.02117 −2.02150 −2.02008 −2.01991
−2.01497 −2.01490 −2.01463 −2.01493 −0.01392

𝐿 = 2 −2.05555 −2.05506 −2.05478 −2.05537 −2.05552 −2.05562
−2.03124 −2.03100 −2.03073 −2.03115 −2.03121 −2.03127
−2.01999 −2.01986 −2.01958 −2.01993 −2.01996 −2.02001
−2.013888 −2.01380 −2.01352 −2.01384 −2.01386 −2.01389
−2.01020 −2.01014 −2.00986 −2.01017 −2.01018

𝐿 = 3 −2.03110 −2.03081 −2.03054 −2.03101 −2.03117 −2.03125
−2.01991 −2.01974 −2.01946 −2.01984 −2.01994 −2.02000
−2.01382 −2.01372 −2.01344 −2.01378 −2.01385 −2.01389
−2.01015 −2.01008 −2.00981 −2.01012 −2.01017 −2.01020
−2.00777 −2.00772 −2.00745 −2.00775 −2.00779

𝐿 = 4 −2.01999 −2.01980 −2.01953 −2.01993 −2.01994 −2.02000
−2.01388 −2.01376 −2.01349 −2.01384 −2.01384 −2.01388
−2.01020 −2.01012 −2.00984 −2.01017 −2.01017 −2.01020
−2.00781 −2.00775 −2.00748 −2.00778 −2.00778
−2.00617 −2.00612 −2.00585 −2.00615 −2.00615

𝐿 = 5 −2.01396 −2.01382 −2.01355 −2.01392 −2.01384 −2.01388
−2.01026 −2.01016 −2.00989 −2.01022 −2.01017 −2.01020
−2.00785 −2.00778 −2.00751 −2.00783 −2.00778 −2.00781
−2.00620 −2.00615 −2.00588 −2.00618 −2.00615
−2.00502 −2.00499 −2.00471 −2.00501 −2.00498

𝐿 = 6 −2.01031 −2.01019 −2.00992 −2.01028 −2.01017 −2.01020
−2.00789 −2.00782 −2.00754 −2.00787 −2.00778 −2.00781
−2.00624 −2.00617 −2.00590 −2.00622 −2.00615 −2.00617
−2.00505 −2.00500 −2.00473 −2.00503 −2.00498
−2.00417 −2.00414 −2.00386 −2.00416 −2.00411

𝐿 = 7 −2.00793 −2.00783 −2.00756 −2.00791 −2.00778 −2.00781
−2.00626 −2.00621 −2.00594 −2.00625 −2.00615 −2.00617
−2.00507 −2.00506 −2.00479 −2.00506 −2.00498 −2.00499
−2.00419 −2.00418 −2.00391 −2.00418 −2.00411
−2.00360 −2.00350 −2.00323 −2.00351 −2.00346
given by Eq. (27), derived using the classical radially dependent par-
titioning fractions [22,23]. The central potential results have been
evaluated within the infinite nuclear mass approximation, but including
higher spherically symmetric multipole interactions using the mean-
field approximation, ⟨𝑗0⟩. The expectation value given by Eq. (29) is
resented for the first time in this work. With the new expectation
alue, we find better agreement between our present central potential
𝑉𝑐𝑒𝑛) results and the reference values. The difference between our
nalytical (𝑉0) and central potential (𝑉𝑐𝑒𝑛) interactions stems from the

use of the symmetry-dependent and radially dependent partitioning
fractions respectively. The difference in the interactions is significantly
manifested in Table 1 results, with the symmetry-dependent results
closely predicting the triplet results while the radially-dependent results
closely predicting the singlet results for helium atom [27]. Also, the
central potential results tend to have degenerate energy eigenvalues
for states with the same principal quantum number for highly excited
states. The symmetry-dependent potential, on the other hand, removes
such degeneracies.

Table 2 presents the symmetry-dependent partitioning fractions (𝛾𝑙𝑖 )
nd the spherically symmetric, radially independent, nuclear charge
5

t

Table 2
Symmetry-dependent partitioning fractions (𝛾𝑙𝑖 ), the corresponding
spherically symmetric, radially independent, nuclear charge screen-
ing parameters (𝜎𝑙𝑖 ), and the effective screened nuclear charge,
𝑍eff = 𝑍 − 𝜎𝑙𝑖 , for helium atom calculated using Eqs. (7) and (20)
respectively. The values are truncated to 6 d.p.
𝑙𝑖 P.F. (𝛾𝑙𝑖 ) Scr. Par.(𝜎𝑙𝑖 ) 𝑍eff

0 0.500000 0.794964 1.205036
1 0.666667 0.963030 1.036970
2 0.707106 1.001591 0.998409
3 0.709492 1.002247 0.997753
4 0.707106 1.001591 0.998409
5 0.704118 0.998767 1.001233
6 0.701314 0.996115 1.003885
7 0.698837 0.993768 1.006232

screening parameters (𝜎𝑙𝑖 ) and effective screened nuclear charge (𝑍eff =
𝑍 − 𝜎𝑙𝑖 ) calculated using Eqs. (7) and (20) respectively.

From these calculations, it can be observed that the 𝑠 states have
he least nuclear charge shielding effect, followed by 𝑙 = 7 states, while
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the 𝑓 states have the highest. It is also interesting to note that the 𝑑
and 𝑔 states have equivalent partitioning fractions and charge screening
parameters. This implies that, in the absence of the non-spherical
short-range potentials, the 𝑑 and 𝑔 states with the same principal
quantum number are degenerate in the energy eigenvalue. The cal-
culated nuclear charge screening parameters are consequently used in
the analytical evaluation of the energy eigenvalues using Eqs. (20)
and (26), within the spherical approximation of the electron–electron
interaction. The nuclear shielding effect can explain why the 𝑙 = 0
nd the 𝑙 = 7 states experience significantly lower energies than the
eference values and the central potential calculations.

onclusion

In this study, an alternative multipole expansion has been used to
erive an analytical symmetry all-electron potential for helium atom.
he success of this study lies on the demonstrated separability of the
wo-electron Hamiltonian employed in this work as well as in the
hoice of an empirically determined partitioning fraction. The local
nd non-local Coulomb potential terms obtained completely describe
he non-relativistic single-electron interaction potential. The effect of
he other electron in charge screening is also manifested in the derived
otential. The non-local component of the analytical potential can be
een to be an effect of the higher-order non-spherical (𝑙 ≠ 0) terms of
he multipole expansion. Nuclear charge screening is determined from
he derived analytical potential to be partly constant and partly varies
s a decaying exponential function scaled by the radial distance to
ower 𝑙. Our results are in reasonable agreement with literature values.
ndeed with and without the finite nuclear mass scaling correction, we
btain the groundstate energy of helium atom to be −2.90382769 and
2.90422284 respectively. It is important to note that the finite nuclear
ass correction is in the same order of magnitude with the relativistic

nteractions like the spin–orbit coupling and the spin–spin coupling
nd should therefore be considered together for a complete treatment.
ith the suggested symmetry-dependent partitioning fractions, the

nfluence of electron–electron interaction can be precisely determined
ithin the framework of non-relativistic quantum mechanics. This is
lready evident in the relative accuracy of the calculated energy of
elium atom in its groundstate. We have also shown that within the
pherical approximation, the Schrödinger equation for helium atom can
e solved analytically, just like the case for hydrogen-like systems. The
se of a radially-dependent partitioning fraction, on the other hand,
eads to a central potential which can also be made separable using
dditional mean-field approximations. The results generated using the
entral potential interaction are in better agreement, though, with
he reference results for all orbitals. Using the central potential, we
btain the groundstate energy of −2.90357835. Resolving the influence
f the nature of the partitioning fraction used in the separation of the
lectron–electron interaction in electronic structure calculations is a
ood candidate for further investigation.

The present symmetry-dependent method, besides accounting for
he influence of the higher-order terms of the multipole potential in
he non-relativistic states of helium atom, also yields the expected non-
egeneracy of states even for the highly excited states. The central po-
ential method, on the other hand, closely predicts the non-relativistic
esults for helium atom evaluated with a Hylleraas-like potential and
avefunctions.
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Appendix

A1

In this section, we show that the lowest-order term of the interaction
potential, due to a single electron in a two-electron system, is separable
in spatial coordinates. This is achieved by evaluating the lowest-order
potential term subject to the optimization condition stated in Eq. (15).
That is,

𝑉 0
0,0(𝑟𝑖, 𝑟𝑗 ) = −𝑍

𝑟𝑖
+ 𝛾𝑙𝑖

1
√

𝑟2𝑖 + 𝑟2𝑗
𝜕𝑉 0

0 (𝑟𝑖, 𝑟𝑗 )
𝜕𝑟𝑖

= 𝑍
𝑟2𝑖

− 1
2
𝛾𝑙𝑖

2𝑟𝑖

(𝑟2𝑖 + 𝑟2𝑗 )
3
2

= 0

1

(𝑟2𝑖 + 𝑟2𝑗 )
3
2

= 𝑍
𝛾𝑙𝑖 𝑟

3
𝑖

1

(𝑟2𝑖 + 𝑟2𝑗 )
1
2

=

3

√

𝑍
𝛾𝑙𝑖

𝑟𝑖

𝑉 0
0,0(𝑟𝑖, 𝑟𝑗 ) = −𝑍

𝑟𝑖
+ 𝛾𝑙𝑖

3

√

𝑍
𝛾𝑙𝑖

𝑟𝑖
.

(30)

Likewise,

𝑉 𝑘>0
𝑙,𝑚 (𝑟𝑖, 𝑟𝑗 ) = 4𝜋 𝛾𝑙𝑖 𝛽

𝑘
𝑙

𝑟𝑘𝑖 𝑟
𝑘
𝑗

(𝑟2𝑖 + 𝑟2𝑗 )
𝑘+ 1

2

𝑌 𝑚∗
𝑙 (𝑟𝑖) 𝑌 𝑚

𝑙 (𝑟𝑗 )

= 4𝜋 𝛾𝑙𝑖 𝛽
𝑘
𝑙

3

√

𝑍
𝛾𝑙𝑖

𝑟𝑖

(

𝑟𝑖 𝑟𝑗
𝑟2𝑖 + 𝑟2𝑗

)𝑘

𝑌 𝑚∗
𝑙 (𝑟𝑖) 𝑌 𝑚

𝑙 (𝑟𝑗 ).

(31)

A2

In this section, we describe the method employed in Eq. (18) to
evaluate the expectation value of both local (𝑙 = 0) and non-local
exchange integral (𝑙 ≠ 0)

Making use of the root mean value,

𝑎𝑣 = ⟨

𝑟𝑖 𝑟𝑗
𝑟2𝑖 + 𝑟2𝑗

⟩ ≈ 1

4𝜋
√

2
, (32)

approximated by determining the squareroot of the peak value (𝑟𝑖 = 𝑟𝑗)
per solid angle, Eq. (31) implies that

⟨𝑉 𝑘>0
𝑙,𝑚 (𝑟𝑖, 𝑟𝑗 )⟩ = 4𝜋 𝛾𝑙𝑖 𝛽

𝑘
𝑙

3

√

𝑍
𝛾𝑙𝑖

𝑟𝑖

(

1

4𝜋
√

2

)𝑘

𝑌 𝑚∗
𝑙 (𝑟𝑖) 𝑌 𝑚

𝑙 (𝑟𝑗 ). (33)

Summing over index 𝑘, the mean multipole interaction potential can
e expressed as

0(𝑟𝑖, 𝑟𝑗 ) = −𝑍
𝑟𝑖

+ 𝛾𝑙𝑖 𝑗0(𝑡)

3

√

𝑍
𝛾𝑙𝑖

𝑟𝑖

𝑉𝑙(𝑟𝑖, 𝑟𝑗 ) = 4𝜋 𝛾𝑙𝑖 𝑗𝑙(𝑡)

3

√

𝑍
𝛾𝑙𝑖

+𝑙
∑

𝑌 𝑚∗
𝑙 (𝑟𝑖) 𝑌 𝑚

𝑙 (𝑟𝑗 )

(34)
𝑟𝑖 𝑚=−𝑙
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Table 3
Mean values of the first few spherical Bessel-like
functions, ⟨𝑗𝑙(𝑡)⟩, evaluated using Eqs. (32) and (35).
⟨𝑗𝑙(𝑡)⟩ Mean value

𝑗0(𝑡𝑎𝑣) 1.001591982 × 100

𝑗1(𝑡𝑎𝑣) 2.822460800 × 10−2

𝑗2(𝑡𝑎𝑣) 7.966284926 × 10−4

𝑗3(𝑡𝑎𝑣) 2.997936894 × 10−5

𝑗4(𝑡𝑎𝑣) 1.269233885 × 10−6

𝑗5(𝑡𝑎𝑣) 5.208375019 × 10−8

𝑗6(𝑡𝑎𝑣) 2.486752189 × 10−9

𝑗7(𝑡𝑎𝑣) 1.216089476 × 10−10

where the spherical Bessel-like function, written as

𝑗𝑙(𝑡) = 𝑡𝑙
∞
∑

𝑘=0,2,…

(2𝑙 + 2𝑘 − 1)!!
𝑘!!(2𝑙 + 𝑘 + 1)!!

𝑡𝑘, (35)

is evaluated using the mean value of 𝑡 given in Eq. (32). Table 3 shows
the first few mean values of the spherical Bessel-like functions, ⟨𝑗𝑙(𝑡)⟩,
valuated using Eqs. (32) and (35).

From the treatment of the electron–electron interaction, the multi-
ole potential terms,

𝑚
𝑙 (𝑟𝑖) = 4𝜋 𝛾𝑙𝑖 𝐴

𝑚
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𝑍𝑟𝑖

]

× ∫

∞

0
𝑟2+𝑙𝑖+𝑙𝑗𝑗 exp

[

−
( 2 + 𝑙𝑖 + 𝑙𝑗
(𝑙𝑖 + 1)(𝑙𝑗 + 1)

)

𝑍𝑟𝑗

]

d𝑟𝑗 𝛿𝑙𝑖 ,𝑙𝑗+𝑙𝛿𝑚𝑖 ,𝑚𝑗+𝑚

= 4𝜋 𝛾𝑙𝑖 𝐴
𝑚
𝑙 ⟨𝑗𝑙(𝑡)⟩

3

√

𝑍
𝛾𝑙𝑖

𝑟𝑙+1𝑖

∣ 𝑁𝑛𝑗 ,𝑙𝑗 ∣
2 exp

[

−
(

𝑙
(𝑙𝑖 + 1)(𝑙𝑖 − 𝑙 + 1)

)

𝑍𝑟𝑖

]

×
(2𝑙𝑖 − 𝑙 + 2)!

[

(𝑙𝑖 + 1)(𝑙𝑖 − 𝑙 + 1)
](2𝑙𝑖−𝑙+3)

[

(2𝑙𝑖 − 𝑙 + 2)𝑍
](2𝑙𝑖−𝑙+3)

𝛿𝑙𝑖 ,𝑙𝑗+𝑙𝛿𝑚𝑖 ,𝑚𝑗+𝑚,

(36)

manating from the inner integral of the double integration (in space
oordinates) are evaluated using the Laplace transform method and
ydrogenic radial wavefunctions,

𝑛′𝑙′ (𝑟) = 𝑁𝑛′ ,𝑙′ 𝑟
𝑙′ exp

(

− 𝑍𝑟
𝑙′ + 1

)

, (37)

s our trial functions, where 𝑁𝑛′ ,𝑙′ are the normalization factors and
′ = 𝑙′ + 1 is the principal quantum number. In Eq. (36), we have
mposed the conditions 𝑙𝑖 = 𝑙𝑗 + 𝑙 and 𝑚𝑖 = 𝑚𝑗 + 𝑚 in the triangular
elations of the angular momentum algebra. The angular factor 𝐴𝑚

𝑙
rises from the angular integral and can be evaluated with the help
f the Wigner-3𝑗 symbols as

𝑚
𝑙 = ∫ 𝑌

𝑚𝑗
𝑙𝑗

𝑌 𝑚∗
𝑙 𝑌 𝑚𝑖

𝑙𝑖
d𝛺𝑖 × ∫ 𝑌 𝑚𝑖

𝑙𝑖
𝑌 𝑚
𝑙 𝑌

𝑚𝑗
𝑙𝑗

d𝛺𝑗

= (−1)𝑚
(2𝑙𝑖 + 1)(2𝑙 + 1)(2𝑙𝑗 + 1)

4𝜋

(

𝑙𝑖 𝑙 𝑙𝑗
0 0 0

)2 (

𝑙𝑖 𝑙 𝑙𝑗
𝑚𝑖 𝑚 𝑚𝑗

)2

.

(38)
7

In principle, the triangular relations allow 𝑙𝑖 = 𝑙𝑗 ± 𝑙 but the inclu-
sion of 𝑙𝑖 = 𝑙𝑗 − 𝑙 leads to divergences in the Hamiltonian. This can be
explained that the exchange of quantum numbers between the electrons
is mediated by the operator and can go only in one direction such that
𝑙𝑖 = 𝑙𝑗 + 𝑙.
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