International Journal of Energy and Power Engineering

2015; 4(2-1): 63-72 Scelencel*
Published online December 26, 2014 (http://wwwrsogpublishinggroup.coml/j/ijepe) ‘
doi: 10.11648/j.ijepe.s.2015040201.16 Science Publishing Group

ISSN: 2326-957X (Print); ISSN: 2326-960X (Online)

Power swing prediction for out-of-step mitigation

V. Siyoit, S. Kariuki? M. J. Saulo?

!Department of Electrical Engineering, Pan Africamivérsity of Basic Science and Technology, Nairéginya
2Department of Electrical Engineering, Technical ¥énsity of Mombasa, Mombasa, Kenya

Email address:
v.siyoi@gmail.com (V. Siyoi), kariukisamuel2004@wahcom (S. Kariuki), michaelsaulo@yahoo.com (MSdulo)

Tocitethisarticle:

V. Siyoi, S. Kariuki, M. J. Saulo. Power Swing Pin for Out-of-Step Mitigationinternational Journal of Energy and Power
Engineering Special Issue: Electrical Power Systems OperatimhRianning. \Vol. 4, No. 2-1, 2015, pp. 63-72.

doi: 10.11648/}.ijepe.s.2015040201.16

Abstract: This paper explored the possibility of accuratelgdicting the classification of developing powerirsys. The

notion of machine learning was employed, and tesitedapplication of Decision Tree (DT) algorithnaswide area power
system protection schemes. The novelty of the desigVide Area Protection (WAP) scheme was portrdyethe WAP’s

ability to adaptively and accurately predict thassification of developing successive power swiljs being a Data Mining
(DM) technique, a transient stability analysis vpa&sformed on an IEEE 39 bus test system in Dig SIL&. The learning
sample from the Phasor Measurement Unit (PMU) dataorganized and stored in a data base in Midr&sake!® 2010. The
CART analysis and DT model design was done usitigpi@aPredictive Modeller-CART® v, trial licenc&he results of this
investigation were quite accurate and gave DT #&lgos ‘thumbs-up’ in terms of classification pretib.

K eywor ds. Decision Trees, Power Swing, Out-of-Step, Wide APeatection

1. Introduction The major limitation to employing DTs is that théseonly
. a single pair of a binary output which infers thessification
problems as a binary output; as either ‘yes/noiams. DTs
are also unstable; a small change in the inpubiegrsample
may give a completely different decision model. Tbé
using the CART technique was developed as follows:
The learning sample L was arranged asnaxn
matrix..
(i) Attributes were sorted in order to initialize the
splitting points that maximized the splitting crita.
(a) From the set of attributeﬁz{al,az,...,an} in the

learning sample L, an attribul] A was selected. If
a was numeric, the splitting was as equation (1)

Despite the profound success of various automathasirial
processes, automation capabilities were not supeniough to
match up to power system dynamism and the ratehathw
power system changes occur. This was because Eyst&m _
transients, faults, power swings and other powestegsy ()
abnormalities develop within milliseconds, a tinoe fast for
autonomous systems to detect and to respond tamrhediate
discussion presents a non-conventional method sifjniag a
WAP scheme that enhances the stability of a poystes.

2. Decision Trees

The DT technique using the Classification and Regjom ga(k)z Xa(k+1)_xa(k) (1)
Trees (CART) is employed to perform the predictmina 2
power swing classification. As developed in thisrkydDT (b) If a was defined as a categorical variable of sets

algorithms have been used to predict power swirtgistware
also discussed in references [4], [5], [14], [2[®2], [23], e _
[24], [25], [26], [27], [28], [29], [30], [31]. was within the range of available sets of that
The CART algorithm is recommended for developing DT . partu_:ular gttrlbute. .

models, the most significant traits being simpjiciand (il The_ impurity reduction _Ievel was computec_;l from the
speedy execution of the models. Complex hiddenindion Gini improvement function as represented in equatio
is classified and simplified into binary ‘yes/ncéaursive 2).

statements.

Sa={sl,sz,...,sn}, then the possible splitting point
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was satisfied.

(iv) A variable ranking of all attributes was performed. n
The measure of importance of a variabfe  in C(1|')’7(')Ni(t) Ni. i
. , : : YT > for all values of]  (9)
relation to the final tree T is the weighted surmoas C(||J )7T(J)Nj(t) N
all splits in the tree of improvements that has o . . .
when it is used as a surrogate as shown in equation(ix) Each of the remaining predictor’s best split points

(). were defined using the Gini split criterion. Thexhe
splitting point of the subsequent node that maxéwiz
maxAIC, (§x’t) the splitting criterion was selected and stepsi)(vii
_ ~ ©) through (ix) were repeated.
M(X) —ZAI(SX,t) (x) If the stopping rules had not been satisfied, s{ejii$
T

through (x) were repeated, otherwise process stbppe

. . . To avoid unnecessary redundancy, optimization tjinou
The variable importanc¥l (x) was expressed in terms of pruning the decision model is performed. This is by

a normalised quantity relative to the variable hgvithe removing tree branches whose cost complexities alpen

largest measure of importance, shown in equatipn (4 associated with misclassification of cases) redube
M (%) reliability of the tree. For a maximal sized tra¢be cost
VI(x) =———x100 (4) complexitya =0. Pruning therefore evaluates tree branches
M (Xmas) as shown in equation (10) where each subsequentcibra
. . L removal R T, >T, >,...>T. increases the cost complexity
(v) Using the Gini purity index, the root node was a1t 2 t
identified. thus optimizing the DT.
(vi) On the root node of the DT, the splitting points fo _
the resulting child nodes were located. The spijtti Ry =R(T)+alL (10)

point of the root node was determined from amongst . _ . .
the set of all possible spliting points of all the Wherea is the complexity function,R(T) is the re-

attribute/variables. For each splitting Va|ESa at Substitution error and. is the number of branch nodes.
. . Validation of the DT model was done through a \dfol
a particular nodet , the learning sample was cross-validation. Specifically, a 10-fold crossigiation was
partitioned into separate subséfsandt; forming performed as follows: LeT be a tree grown using all data
the left and right child nodes respectively. from the whole data set® and letvV=2 be a positive
(@) For numerical variables, then the partitioning & ainteger.

shown in equation (5). (i) Divide n° into V mutually exclusive subset#’,

tL :{xa(k) if x, (k) SSk} wherev=12...v. Letn, =1n° - 7,.
tR:{xa(k) if xa(k) >sk} ©) (i) For eachv, consider#, as a learning sample and

: . . grow a treel,, on 7,,.
(b) For categorical variables, (have finite sets) thieam

partitioning is as shown in equation (6).

tL ={x, (k)if x, (k) =s,}
tR ={x, (k)if x,(k)#s,}

(iii) Assign j, (t)or y,(t) for a nodet of T, .
(iv) Consider#', as a test sample and calculate its test
(6) sample risk estimat®(T, ).

(v) Repeat step (iv) for each value wf The average of
the test samples is used as the v-fold cross valida
risk estimate of T.

values s0S, amongst all attributesallA was  The v-fold cross-validation estimat&® (T) of the risk of

found. Gini splitting points were computed as shownhe treeT and its variance are estimated by equation (13) as
in equation (7). developed by references [32], [33], [34] and [35].

(vii) Optimal split s, over all possible splitting

ptimal
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The ROC curve represents the ability of the DT rhade
accurately discriminate between the stable powéngsvand

The aim of the transient stability simulation wasnduce
power disturbances/swings at the critical load remnand at

the unstable power swings. L&tbe the scale of test result the extra-high voltage lines to create generatad-lo

variable; low values suggest a negatixe result while a
high value suggests a positive, result. Area under the
ROC curve is calculated as equation (14).

6=Flx, >x_) (14)

Successive points in the ROC curve are connectetthdoy
trapezoidal rule as expressed in equation (15).

n XN

1 —= ] T+ >
W= > n__.xn,_ (15)
NN_ xJ(allvalue§ + — 5 )

3. Results & Analysis

imbalance. The simulation was done consideringadisible
power system states, until the power system wasreéd to
be transiently unstable in each of the various estat
Graphical representations of the response of thHeeremt
generators due various contingencies induced dutirgg
simulation are shown in figure 1, figure 2 and fig8. The
figure 1 shows a successive OOS response of eatheof
generators after a single contingency simulatidre fiormal
operating conditions for the transient stabilitydst was set
such that:-
(i) The voltage should be within 0.95-1.05 p.u.
(i) The load phasor voltage angle should not advaree th
generator phasor voltage angle by exactly 4 pgs.sl
(iii) The frequency deviation from the nominal frequency
of the reference machine should not be greater than
4%.

Successive Power Swings
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Figure 1. Simulation Responses of Successive Swings
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Figure 2. Rotor Angle Slip from Reference Machine
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Figure 3. Generator Speed Deviations
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Figure 4. Expert System DT Models

A

The figure 2 shows the response of each of thergemé&  figure 3 shows the speed response due contingencies
rotor position. A pole slip at the onset of thertbupole slip  simulated. The response curve shows the speedtideviz
reflects an oscillating response on the graph ég2r The the generators due loss of synchronism and therefeviate
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from their normal synchronism speed.
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The process of executing the designed DT model\wedo successive swings develop. If an instantaneous gswin
a procedure proposed by this paper illustrated in successive swings develop within a duration of s&donds,
figure 5. An Expert System (ES) was chosen as théhen the DT model in the IDSS is given first prigrio
secondary engine for executing the DT model for thexecute. If the swings develop within a duration <@f.1
following reasons: seconds or when the DT model from the main IDS$,fai
(i) The proposed ES as shown in figure 4 has the ybilithen the DT model from the ES is executed. The main
to learn from a wider base of experience thanDSSmay fail if its window cycles are not complet@ongst

conventional decision support systems. other time factors. Both the IDSS and ES modelsipdated

(ii) Ability to respond quickly and successfully to newto learn of new cases. The chosen DT model to égecu
situations. compares its decision rules with that of an onldU to

(i) Utilizes reasoning to solve problems at perplexingnitiate Out-of-Step Trip (OST) or Out-of-Step Blo¢OSB)
situations. functions.

(iv) Recognizes the relative importance of different The DT model therefore gives an insight on relay
elements in a situation. algorithms in mitigating various power system fauithout

(v) Ease of duplication of decisions and disseminatibn over depending on impedance transfer methods. The
the same [1], [36]. hypothesis thus tested was that unlike conventidisgance

The ES manipulates DT models from three differentelays which use impedance tracking, WAP schemeasa
sources, all of which are stored within the memufithe ES.  selected important variables for OOS detection.rEaf time

The sources of these DT models are: applications, these important variables are they onl
(i) Developed by the ES independently from the maiparameters updated to keep the model attuned it@ifing
population database of measurements. power system conditions. Updating only these setect
(i) Knowledge induced to the ES by the control centreariables reduces the digital relay execution tand is thus
operator and protection engineer. able to perform with speed.

(i) A replica copy of the final DT model developed hg t The implementation of these DT models is achieved
main Intelligent Decision Support System IDSSthrough a top-down induction of the DT rules. Th€ iles

(adaptive OOS digital-relay). from the optimum DT (figure 8) for predicting pow&wnings

The management and timing functions are importdrenwv are shown in figure 6.

*Terminal Node 10%/ *Terminal Node 1*/

if if

( (

GEN_ROT_ANGLE_WRT MACHINE_ANG_DEG_> 439803 && GEN_ROT_ANGLE_WRT MACHINE_ANG_DEG_<=-430803 &&

L16_24 T1QIN_KA=>-0.0643745 && L23_24_VOLT_ANG_IN_DEG <=126.110 &&

GEN_SPEED_DEVIATION_HZ_=>-20.0187 && L.22_23_11P_IN_KA <=0 885401 &&

L1135 11Q IN KA<=0.168512 123 24 T1P_IN_KA <=0 520068 &&

) L11_35_I1P_IN_KA<=0246653

{ )

terminalNode = 10;

class = Unstable Power Swing; terminalNode = 1;

1 class = Stable Power_Swing;

}

Figure 6. DT model representing rules for Predicting Poweirs

The variable ranking of individual attributes iredictinga  power swing is shown in

TABLE 1. The reliability index of the performance of theThe relative cost is the penalty assigned (as aenigm
DT model in making an accurate decision to a ptedic quantity) due to wrong classification made by the odel.
power swing was given in terms of the relative cBggure 7 The relative cost as observed is quite low implyihgt the
shows the quantitative graph representing theivelatost. DT model generally made the right decisions.
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Figure 7. Optimal Tree's Relative Cost Performance
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Figure 8.0ptimal Decision Tree Model

The area under ROC curve strengthens the validitheo in TABLE 4.
designed DT model. The area under the ROC curveiates The response statistics of each of the terminakéraidhe
the accuracy of discrimination between two decisigks the optimum DT model are shown in TABLE The overall test
area value tends towards 1, then the more accilmatehoice performance of 99.82% as shown in TABLE 3 was quite
of decision made by the DT model. Performance ef T  accurate and therefore suggested a reliable DT imode
model as valued by the area under ROC curve iesepted

Table 1. Variable Ranking

Variable Percentage score
GEN_ROTOR_ANGLE_WRT_MACHINE_ANG__DEG 100.00
GEN_I1P_KA 79.95
GEN_SPEED_DEVIATION_HZ 75.66
GEN_ACTIVE_PWR_MW 73.51
GEN_CURRENT_MAG_KA 73.44
GEN_ELECTRICAL_TORQUE_IN_P_U 72.35

L23 24 VOLT ANG_IN_DEG 31.41

L38_39 VOLT ANG_IN_DEG 24,57

Table 2. Response Statistics Of Optimal Tree's Terminal Node

Node Cases Percent Perf:ent Node Class Percent  Train Pct.StabIe Train Pa.pnaable ScorePa.Stable Score Pd.pnaable
ScoreData  Train Data Correct  Power Swing Power Swing Power Swing Power Swing

1 14586 24.18 27.08 Stable Swing  99.99 99.99 0.01 99.99 0.01

2 25 0.04 0.05 Unstable Swing 100.00  0.00 100.00 0.00 100.00

3 73 0.12 0.14 Unstable Swing 100.00  0.00 100.00 0.00 100.00

4 169 0.28 0.31 Unstable Swing 91.12 8.88 91.12 8.88 91.12

5 4309 7.14 8.00 Unstable Swing 99.81 0.19 99.81 0.19 99.81

6 441 0.73 0.82 Unstable Swing 100.00  0.00 100.00 0.00 100.00

7 3637 6.03 231 Stable Swing  98.68 96.14 3.86 98.68 1.32

8 996 1.65 0.06 Unstable Swing 3.01 0.00 100.00 96.99 3.01

9 2286 3.79 0.16 Stable Swing  100.00  100.00 0.00 100.00 0.00

10 33492 55.51 60.61 Unstable Swing 98.78 0.00 100.00 1.22 98.78

11 87 0.14 0.04 Stable Swing  100.00  100.00 0.00 100.00 0.00

12 229 0.38 0.43 Unstable Swing 100.00  0.00 100.00 0.00 100.00
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Table 3. Test Prediction Success

Actual Class Total Class Percent Correct Unstable Swing N=37899  Stable Swing N=15966
Unstable_Power_Swing 37952 99.80 37877 75
Stable_Power_Swing 15913 99.86 22 15891

Total: 53865.00

Average: 99.83

Overall % Correct: 99.82

Table 4. ROC &Error Profiles

No. of 5-foldRel. 10-fold 20-fold Average MinRd. MaxRe. 5-fold 10-fold 20-fold Average Min ROC Max ROC
Nodes  Error Rel. Error Rel.Error Rel.Error Error Error ROC ROC ROC ROC

2 0.2023 0.2024 0.2026 0.2025 0.2023 0.2026 0.8988 0.8988 0.8987 0.8988 0.8987 0.8988
3 0.0895 0.0893 0.0896 0.0894 0.0893 0.0896 0.9597 0.9598 0.9597 0.9597 0.9597 0.9598
4 0.0269 0.0269 0.0269 0.0269 0.0269 0.0269 0.9924 0.9924 0.9924 0.9924 0.9924 0.9924
5 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.9929 0.9929 0.9929 0.9929 0.9929 0.9929
6 0.0108 0.0108 0.0108 0.0108 0.0108 0.0108 0.9955 0.9954 0.9954 0.9954 0.9954 0.9955
7 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.9976 0.9976 0.9976 0.9976 0.9976 0.9976
8 0.0058 0.0058 0.0058 0.0058 0.0058 0.0058 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987
9 0.0054 0.0055 0.0055 0.0055 0.0054 0.0055 0.9990 0.9987 0.9987 0.9988 0.9987 0.9990
11 0.0044 0.0040 0.0040 0.0041 0.0040 0.0044 0.9990 0.9992 0.9992 0.9992 0.9990 0.9992
12 0.0037 0.0034 0.0034 0.0035 0.0034 0.0037 0.9994 0.9997 0.9997 0.9996 0.9994 0.9997
13 0.0030 0.0027 0.0030 0.0029 0.0027 0.0030 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
14 0.0023 0.0018 0.0018 0.0020 0.0018 0.0023 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
15 0.0019 0.0017 0.0018 0.0018 0.0017 0.0019 0.9997 0.9998 0.9998 0.9998 0.9997 0.9998
16 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.9996 0.9998 0.9997 0.9997 0.9996 0.9998
18 0.0012 0.0010 0.0011 0.0011 0.0010 0.0012 0.9997 0.9998 0.9997 0.9997 0.9997 0.9998
20 0.0007 0.0005 0.0006 0.0006 0.0005 0.0007 0.9997 0.9998 0.9997 0.9997 0.9997 0.9998
21 0.0007 0.0005 0.0006 0.0006 0.0005 0.0007 0.9997 0.9998 0.9997 0.9997 0.9997 0.9998
23 0.0006 0.0005 0.0006 0.0006 0.0005 0.0006 0.9997 0.9998 0.9997 0.9997 0.9997 0.9998
25 0.0006 0.0004 0.0005 0.0005 0.0004 0.0006 0.9997 0.9998 0.9997 0.9997 0.9997 0.9998

(i) Designed an adaptive OOS relay using a DT model,
which illustrated how a reliable WAP scheme coutd b
developed. The designed model exhibited noveliisin
ability to predict successive power swings in aefyn
fashion. The DT model had a high accuracy in
discriminating between the various power swing sype

(i) Proposed a novel execution procedure for the dedign
DT model. The procedure was to ensure timely
execution of the right RAS.

The beneficiaries of the findings of this paperlude

power system protection engineers and system asrat

4. Conclusion

This paper investigated the suitability of DTs imhancing
WAP schemes. DT models enable fast execution aggkpt a
simplified interpretation of rules to the task ifwex. Upon
testing of the optimal DT model, it was found to 3%:82%
accurate in predicting power swings as present@dBLE 3.

The application of DT models shows significancdigital
relay configuration settings. The splitting poitinves of the
optimal DT model mark the boundary between thelstahd
unstable cases, therefore the threshold digitalyrskttings.
The violation of these threshold limits would adeudhe )
digital distance relay to perform the RAS, speeific the ACronymsand Notation
OST and OSB. The RAS is to mitigate the impact &fS0of

generators, pole slip/frequency deviation of thegosystem 72 Whole data set.

and the loss of stability of the power system nekwadue to i(t) Gini index.
power swings/transients. T Final tree.
In performing the RAS it is recommended that circui (t) The total number of vector measurements

breaker locations for OST should be at the eletrientre at nodet.
where the voltage is zero. The electrical centréoisnd r(t‘_)andn(t ) Total number of vectors falling into the
at 5 =180 . Further work could be investigated on methods R/ left and right subsets respectively.

of islanding location. The identified islands stbukduce (C ) The actual number of cases of cl&ss at
areas cut out of power supply by employing smaspalich ti nodet .
programs. " e
On studying DT suitability to enhancing WAP schemesC(J|') Cost 9f classifying as J.
the author's specific contributions presented is ffaper are  p angp,, Impurity levels at both subsetsand tg

thus: respectively.
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Re-substitution estimator of the
probability that a case falls in nodend

belongs to clasg; . [4]

Number of cases with positive and
negative actual states respectively.
Number of true negative cases with test
results equal tgj .

Number of true positive cases with test
results equal tg .

Number of true positive cases with test
results less thar .

Number of true positive cases with test
results greater tha.

For categoricaly denotes the empirical
prior situation.
For categorical Y denotes the non-
empirical prior situation.

> fn; number of cases in data set in
nU7

test sample.
> foly =) number of classj in
nI]h’V(t) nen
. [10]
1
AT M
N¢ O noiaf) "

[5]

[6]

[7]

(8]

9]

Mean dependent

variable inAt) [11]
Maximal decrease in node impurity for
division of a parent nodd into child
nodesC’; and C°, guided by surrogate [12]
splits.

%F{ij; estimator of the probability that

j

a case falls in node. [13]

M; prior probability provided by the
n

n(c;)
trainer of the data.
PlC; t); estimated probability that a case [14]
plc;t) p(t)
falls in nodet and belongs to class ; .
[15]
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