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Abstract

The development of free-electron lasers and new generation light sources is enabling the
realisation of high intensities and short pulse durations exceeding the currently attain-
able ∼ 1023 W cm−2 and attosecond time scale limits. These extreme laser limits should
make it possible to unravel new science which is not yet feasible at the current laser
parameter regimes. The very high intensity of radiation sources and the short pulse
duration is anticipated to enhance imaging of tiny structures with very high resolution,
filming of ultra-fast processes, and studying matter under extreme conditions. Besides
the new frontiers likely to be unfolded, significant challenges exist in the theoretical
simulation of these non-linear processes. In the weak-field intensity regime, the electric
dipole approximation has been quite successful in describing the light-matter interac-
tion dynamics reproducing many of the experimentally observed features. But at the
unprecedented intensities and x-ray wavelengths produced by the new light sources, the
electric dipole approximation is likely to break down. The role of higher multipole-order
terms in the interaction Hamiltonian, associated with the radiation pressure, is then
expected to become important in the accurate description of the interaction dynamics.

This study extends the solution of the non-relativistic time dependent Schrödinger
equation for a single active electron system interacting with short intense laser pulses
beyond the standard dipole approximation. This is realized using both the Taylor and
the Rayleigh plane-wave multipole expansion series of the spatial retardation term. The
inclusion of higher multipole-order terms of the interaction is expected to increase the
validity and accuracy of the calculated observables relative to the experimental mea-
surements. In addition, it is shown that for equivalent laser parameters the Rayleigh
multipole expansion series is more accurate and efficient in numerical convergence. The
investigated non-dipole effects manifest in both differential and total ionization prob-
abilities in form of the increased ion yields, the distorted above-threshold-ionization
structure, and asymmetry of the photoelectron angular distribution in both polarization
and propagation directions. The non-dipole effects are seen to increase with intensity,
wavelength, and pulse duration. The results for hydrogen as well as helium atom are
presented in this study. A new model potential for helium, and any other two-electron
atomic system, yielding reasonably accurate results within the frozen core approximation
is also developed.
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Zusammenfassung

Die Entwicklung Freier-Elektronen-Laser und einer neuen Generation von Strahlungs-
quellen erlaubt die Realisierung hoher Intensitäten und kurzer Pulsdauern über die
derzeit erreichbaren ∼ 1023 W cm−2 und Attosekunden Zeitskalen hinausgehend. Diese
extremen Laserparameter sollten den Zugang zu neuen physikalischen Regimes schaf-
fen, welche über die derzeit realisierten Regimes hinausgehen. Die sehr hohen Inten-
sitäten der Strahlungsquellen sowie die kurzen Pulsdauern sollten das Abbilden klein-
ster Strukturen mit sehr hoher Auflösung, filmen ultraschneller Prozesse und studieren
von Materie unter Extrembedingungen ermöglichen. Neben den sich durch die experi-
mentellen Entwicklungen ergebenden Möglichkeiten gibt es signifikante Herausforderun-
gen bei der theoretischen Simulation dieser nicht-linearen Prozesse. Im Regime niedriger
Laserintensitäten war bisher die Dipolnäherung recht erfolgreich bei der Beschreibung
der durch die Licht-Materie-Wechselwirkung erzeugten Dynamik, wodurch viele exper-
imentell beobachtete Resultate reproduziert werden konnten. Bei den durch die neuen
Strahlungsqullen erzeugten bisher unerreichten Intensitäten und Rönten-Wellenlängen
kann die Dipolnäherung allerdings zusammenbrechen. Höhere Multipol-Wechselwirk-
ungen, die mit dem Strahlungsdruck assoziiert werden, sollten dann erwartungsgemäß
wichtig zur genauen Beschreibung der Wechselwirkungsdynamiken werden.

In dieser Arbeit wird eine Methode zur Lösung der nichtrelativistischen zeitabhängi-
gen Schrödingergleichung zur Beschreibung von Systemen mit einem einzelnen aktiven
Elektron, das mit einem Laserfeld wechselwirkt, über die Dipolnäherung hinausgehend
erweitert. Dabei wird sowohl die Taylor- als auch die Rayleight-Multipol-entwicklung des
Retardierungsterms ebener Wellen verwendet. Es wird erwartet, dass die Berücksichti-
gung höherer Ordnungen der Multipolwechselwirkung zu einer erhöhten Genauigkeit und
Richtigkeit der Resultate führen. Weiterhin wird gezeigt, dass die Rayleigh-Multipol-
entwicklung für gleiche Laserparameter genauer ist und schneller zur Konvergenz der
numerischen Rechnung führt. Die nicht-Dipoleffekte spiegeln is sowohl in den differen-
tiellen als auch den totalen Ionisierungswahrscheinlichkeiten in Form von erhöhten Ion-
isierungsausbeuten, verzerrten ATI Strukturen und einer Asymmetrie in der Photoelektr-
onenwinkelverteilung in der Polarisations und Propagationsrichtung wider. Es wird
beobachtet, dass die nicht-Dipoleffekte mit der Intensität, Wellenlänge und Pulsdauer
zunehmen. Es werden Ergebnisse sowohl für das Wasserstoffatom als auch das He-
liumatom gezeigt. Zusätzlich wurde ein neues Modellpotential für Helium (oder ein
beliebiges anderes atomares System mit zwei Elektronen) entwickelt, welches sinnvolle
Ergebnisse im Rahmen der Näherung eines eingefrorenen Elektronenrumpfes liefert.
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1 Introduction

The development of free-electron lasers and new generation light sources [1] is enabling
the realisation of high precision experiments investigating various non-linear processes
in the dynamics of atoms, molecules, ions, and solid clusters interacting with laser pulses
with intensities in the order of ∼ 1023 W cm−2 and durations in the attosecond time
scale respectively [2].

The Free-electron Lasers (FLASH) in Hamburg (Germany) can produce 13.7 nm op-
timal wavelength accompanied by 4.6 nm in the 3rd harmonic and, 2.75 nm in the 5th

harmonic with the pulse duration in the region of 10 fs and peak powers of 10 GW
[3]. The X-ray Free Electron Laser (XFEL) in Hamburg (Germany) is expected to be
operational by 2017 with the super-radiance output in the 4.7−0.05nm spectral range[1].

The Linac Coherent Laser Source (LCLS) in Stanford (USA) and Spring-8 Angstrom
Compact free-electron Laser (SACLA) [4] in Harima (Japan) produce tunable femtosec-
ond x-ray sources with 1 − 0.1 nm spectral range in the self amplified spontaneous
emission (SASE) radiation mode [1]. The Spring-8 Compact SASE Source (SCSS) in
Riken (Japan) produces FEL in the region of 49 nm.

The FERMI at Elettra in Trieste (Italy) are free-electron lasers which produce ra-
diation in the XUV (100 − 10 nm) spectral range with peak powers in the region of
∼ 1GW . The European Synchroton Radiation Facility (ESRF) in Grenoble (France) is
a prominent x-ray research centre producing 1 − 100 keV beam lines with an intensity
of the order 1021 Wcm−2 [5].

The European Laser Infrastructure (ELI) which is a trio of cutting-edge high power
optical laser laboratories in Czech Republic, Hungary, and Romania is also an on-going
project expected to be operational by 2018. The ELI project is designed to push the
current intensity and pulse duration limits into the zettawatt (1021 Wcm−2) peak in-
tensity and zeptosecond (10−21 s) pulse limits [6]. Figure 1.1 shows an intensity map
for the current and targeted laser peak intensities and the fundamental science they are
expected to address.

These extreme laser limits should make it possible to unravel new science which are
not yet feasible at the current laser parameter regimes. The very high intensity of ra-
diation sources and the short pulse duration shall enhance imaging of tiny structures
with very high resolution, filming of ultra-fast processes, and studying matter under ex-
treme conditions. The possible areas of application would include fundamental research
in quantum electrodynamics, medical research, materials science and development [4],
amongst others.

It is already recognized that two special kinds of light have changed the landscape of
research [7]. The advanced visible-spectrum optical lasers has contributed immensely in
ultrafast processes, new materials development, telecommunications advancement and
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1 Introduction

Figure 1.1: (An extract from ref.[6]). Intensity evolution since the first laser demonstration
in 1960, with the different regimes of optics and electrodynamics . Red part of line represents
the regime addressed by the proposed International Center for Zetta- and Exawatt Science
and Technology (IZEST). Black boxes (joules) indicate typical laser energies. Blue boxes
(electron volts) indicate typical particle energies. QCD: Quantum chromodynamics. QED:
Quantum electrodynamics. E: Electric field. e : Electron charge. λc : Compton wavelength.
m0 : Electron mass. c : Speed of light. Ep : Proton energy. mp : Proton mass. Ee: Electron
energy. C3 : Cascaded conversion compression. ELI: Extreme Light Infrastructure. ILE:
Institut de la Lumiére Extrême. CUOS: Center for Ultrafast Optical Science. HHG: High
harmonic generation. CPA: Chirped pulse amplification.

many others. The intense x-rays produced at synchrotons have made it possible to
image new structures and otherwise invisible parts of matter enabling huge leaps in
biochemistry, pharmacology, and material science.

Imaging the ultra-fast processes as an example requires the use of extremely short
pulses in the order of an attosecond pulse duration in order to capture the dynamics
of an electron in an atom or molecule with a typical orbiting time-scales of about 100
as [2, 8]. Such ultra-short pulses can be generated using the high-harmonic generation
(HHG) process where a photo-ionized electron returns and recollides with the parent ion
producing very high energetic radiation when the driving field reverses its direction in the
second-half cylce [9]. The HHG process has also been successfully applied in molecular
orbital tomography [10] based on the idea that the HHG signal contains information
about the ionizing and the recombining system.

Besides being the backbone of processes like HHG, photoionization is in itself very
interesting and applicable in pump-probe experiments . The pump-probe experiments
involve two or more pulses where the pump pulse may polarize and induce dynamics
within the system and the probe pulse would photoionize the system. The photoelec-
tron angular or energy distributions of the photoionized wave packet reveals crucial
information of the system [11].
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Based on the intensity of the laser fields, academic disciplines investigating both theo-
retically and experimentally the various aspects of light-matter interactions are already
established. These disciplines cover all the laser field regimes: weak-field, strong-field,
plasma, and extremely high intensity laser field regimes. Theoretical studies employ
models that are based on the classical solutions to the Newton’s or Maxwell’s equation,
or on the semi-classical and/or semi-relativistic quantum mechanical solution of the
Schrödinger and Pauli equations or on the full relativistic solution of the Dirac equation.

In the weak-field and perturbative strong-field regimes, the electric dipole approxi-
mation has been quite successful in describing the light-matter interaction reproducing
many of the experimentally observed features with the exception of extremely short wave-
lengths where the dipole approximation is not valid any more. But at unprecedented
intensities and x-ray wavelengths introduced by the current generation light sources, the
dipole approximation is theoretically anticipated to break down and the role of higher
multipole-order terms is expected [12, 13] to contribute actively in the interaction dy-
namics.

Going beyond the dipole approximation in simulating the laser-matter interaction
dynamics not only provides a higher degree of validity but also shows the limits of using
the dipole approximation. However, certain key challenges have to be addressed in
launching beyond dipole approximation in the interaction dynamics. First, the very nice
cylindrical symmetry property, where the projection quantum number m is conserved,
is broken. The cylindrical symmetry is predominantly used in the dipole approximation
for treating atomic interactions with radiations whose electric field vector is linearly
polarized along the z axis. This has a consequence of stretching the computational
capacity by requiring very large storage space and very long durations in the calculations
especially in the time propagation routines. This makes calculations going beyond the
dipole to be feasible only for very short wavelengths and lower photoelectron energies,
requiring relatively smaller box radii and significantly smaller basis sizes. Second, the
numerical implementation of the several interactions that come into play is quite a non-
trivial task requiring a deeper insight into the interaction dynamics.

This challenging path of tackling the non-dipole interactions is the theme of this
thesis. The aim was to start with the simplest interactions for a single hydrogen-like
electron system coupling with the radiation field. The overall goal here is to have a
very clear understanding of the effects of the interaction while eliminating the role of
multi-electron systems in the dynamics. The work involved extending the code that was
originally developed by Yulian Vvanne [14] to solve the Time-Dependent Schrödinger
Equation (TDSE) for one-electron systems interacting with strong-field radiation within
the dipole approximation. A spectral expansion employing B splines basis-set is used
in the evaluation of the radial solutions of the time-independent Schrödinger equation.
The radiation gauge was found to be quite convenient and reliable for the numerical
implementation, making use of the known efficiency of velocity gauge [15–17].

The extended BEYDIP code allows two parallel pathways of expanding the spatial
phase retardation term (eik·r). One employs the Taylor multipole expansion series and
the other employs an equivalent Rayleigh plane-wave multipole expansion series which
make use of the spherical Bessel functions in the multipole expansion [18–20]. In the

3



1 Introduction

comparison of the two approaches, it is found that the Rayleigh series perform better
despite the fact that the Taylor expansion offer some convenience if implemented up to
the quadrupole term.

The calculations involving higher multipole-order terms are limited essentially to the
short-wavelength low photoelectron energy domain where the computational capacity
is feasible except in special cases employing the spherical Bessel functions where it is
possible to extract spatial effects while utilizing the cylindrical symmetry. In princi-
ple, the numerical implementation discussed in this work permits the evaluation of the
non-relativistic time-dependent Schrödinger equation to any multipole-order with the
only restriction being the computational limits imposed by the computers and the data
storage capacity. In this work, the results calculated from the 0th up to the 3rd multipole-
order terms of the interaction Hamiltonian are reported.

This thesis is organized as follows. In chapter 1 a brief introduction and motivation
for doing this work is presented. This is followed by chapter 2 which tracks the develop-
ments in strong-field physics from the days when the concept of atomic photoinization
was conceptualized. Chapter 3 describes the theoretical framework for non-dipole inter-
actions, the method used and the details of numerical procedure employed in this work.
The results and discussion are presented from chapter 4 up to chapter 7. Chapter 8
presents a summary and conclusion based on the findings.
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2 Strong Field Photoionization

Atoms, molecules, and ions interacting with light, depending on the strength of the
radiation field, may remain unaffected if the interaction is elastic, or be excited to higher
energy levels of their bound states or continuum states in the case of inelastic interaction.
For excitation to the continuum states, the system is ionized by loosing one or more
of its electrons to the unbound states. The effect of the light field may also lead to
photoassociation if two or more atoms coalesce to form molecules, photodissociation
when the reverse process of disintegrating molecules occurs, or stimulated emission of
radiation where light of a given frequency induces an excited system to release some
energy as the excited electrons relax to the ground state or to lower energy excited
states.

The interaction process can be classified as weak-field if the Coulombic binding po-
tential due to the nuclear field is much greater than that of the optical field. If the
interaction potential due to the optical field is greater, then the process can be consid-
ered as strong-field. The strength of the optical field is usually rated in terms of the
radiation intensity or frequency. In this definition of a weak field process, the effect of
the optical field can be regarded as a weak perturbation on the atomic (or molecular
or ionic) potential and the use of perturbative methods to analyse the effect of the ra-
diation is justified. On the other hand, perturbation theory is invalid in a strong-field
process and consequently the radiative effects can only be described accurately with
non-perturbative methods.

The natural starting point for a discussion of photoionization in atoms and molecules
is the discovery of the photoelectric effect by Hertz in 1881 [21, 22] and the quantum
mechanical interpretation of this effect was first presented by Einstein in his famous
article in 1905 [23]. In the article, the Einstein’s law for photoelectric effect relating the
kinetic energy of photoelectrons emitted from a metal surface to the frequency of the
electromagnetic radiation and to Planck’s constant, is established.

Prior to the production of intense coherent radiation from lasers, ionization of matter
due to its interaction with light was predominantly weak field and it could be adequately
described by the Einstein’s law for photoelectric effect [24]. The law is strictly concerned
with the absorption of a single photon during a transition from a discrete level to a
continuum. The possibility of multiphoton transitions were first predicted by Göppert-
Mayer in 1931 [24–26] and were first observed at radiofrequencies by Hughes and Grabner
in 1950 [24, 27]. The study of multiphoton transitions became practically feasible with
the development of intense laser sources in the 1960s. Two-photon absorption was first
observed in a crystal [28], and in cesium [29]. Likewise, multiphoton ionization was first
observed in the experiments of Hall, Robinson, and Branscomb involving a ruby laser
and negative halogen ions [30] and subsequently from rare gases by Voronov and Delone
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2 Strong Field Photoionization

[31] and Agostini and co-workers [32, 33].

Keldysh [34] in his work in 1964 studied the theory of ionization dynamics of matter
under intense radiation fields. He set a criteria, defined by the so called adiabaticity

or Keldysh parameter (γ =
√

Ip/2Up), to distinguish between the different ionization
mechanisms. The broader classification includes the multiphoton ionization regime if
γ > 1 and tunneling ionization regime if γ ≪ 1. The term Ip refers to the ionization po-
tential of the system which is the minimum energy necessary to release a bound electron
to the continuum states of the system. Up = e2E2

0/4mω
2 on the other hand refers to the

ponderomotive potential (or energy) of the electromagnetic radiation, where E0 is the
magnitude of the peak electric field of the radiation, e and m are the electronic charge
and mass respectively, and ω is the radiation frequency. Figure 2.1 shows a schematic
representation of the various ionization regimes as classified by the Keldysh parame-
ter. The quasistatic regimes can be further split into tunneling and over-the-barrier
ionization regimes, where as multiphoton regime broadly comprises the resonant and
non-resonant multiphoton processes as well as above-the-threshold ionization regimes.
The lowest-order perturbation theory (LOPT) regime is valid at relatively lower strong-
field intensities and in the region where the contribution of resonant processes involving
the intermediate states is negligible. Outside the LOPT regime, higher orders of pertur-
bation theory or a direct numerical solution of the TDSE should be applied for accurate
treatment of the strong-field interactions.

Figure 2.1: (An extract from ref.[35]). A schematic representation of the ionization regimes.
A scaled field strength as a function of scaled photon energy is shown. The solid red line shows
γKel = 1, which divides the region into multiphoton and quasi-static regimes. The quasi-static
regime is further divided into the tunnel and over-the-barrier (or barrier suppression) ionization
regimes.

Similar but slightly different approaches in the theory of multiphoton atomic ioniza-
tion, based on the calculation of the transition matrix elements from an initial discrete
bound state of the system to a final state described by the Volkov wavefunction, were
also developed by Faisal [36] and Reiss [37]. These approaches are generally consolidated
together and referred to as Keldysh-Faisal-Reiss (KFR) theory. Reiss subsequently de-
veloped the so-called Strong field approximation (SFA) [38], which is generally seen as
a modification of the KFR model [39].
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2.1 Multiphoton Ionization

With the current technology, it is now possible to produce laser fields with unprece-
dented intensities [40]. With such high intense fields, strong-field effects such as mul-
tiphoton ionization, above-the-threshold ionization, non-dipole effects, spin and other
relativistic effects may have quite a significant contribution to the light-matter interac-
tions. A brief description of some of the strong-field effects are presented in the following
section.

2.1 Multiphoton Ionization

Multiphoton ionization occurs if a system (atom, molecule or an ion) is ionized by an
electromagnetic field of frequency ω when at least n photons are absorbed in order to
overcome the ionization potential Ip of the system, n being the smallest integer larger
than Ip/~ω. In the weak field, all ejected electrons have energy n~ω − Ip. In a strong
field, more than n photons may be absorbed and the energy spectrum of the ejected
electrons consists of peaks at energies (n + k)~ω − Ip corresponding to ionization after
n+ k photons [41] where k is the number of excess photons absorbed. These ionization
mechanisms are illustrated by figure 2.2.

Figure 2.2: (An extract from ref.[14]). A schematic representation of the single photon,
multiphoton, and above-the-threshold ionization. Each arrow represents a photon and the
length of the arrow represents the magnitude of the photon energy. On the left side of the
Coulomb potential, only one photon is sufficient for ionization while on the right side, many
photons are coupled with virtual states in order to ionize as illustrated by the red solid arrows.
Excess photons may also be absorbed in the above-the-threshold ionization as shown by the
red broken arrows.

If the laser intensities are not too large, the ionization probabilities can be calculated
by perturbation theory applied at the minimum non-vanishing order. The probability of
ejecting an electron after absorption of n+ k photons is proportional to In+k where I is
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2 Strong Field Photoionization

the laser field intensity. If the first peak of the electron energy spectrum is much higher
than the others, the ionization probability would still be proportional to In. This agrees
with experimental results of noble gases irradiated by intensities upto 1015 W cm2 [42]
supporting the validity of perturbation theory applied at the minimum non-vanishing
order.

2.1.1 Resonant Multiphoton Ionization (REMPI)

Resonant processes occurs if, instead of the virtual states shown in figure 2.2, one or
more excited bound states serve as an intermediate state. The final bound states would
correspond to resonant excitation while the final continuum or autoionizing states would
correspond to resonant ionization [43]. This simply means that absorption of multiple
photons with a total energy equal to the excitation energy of any bound state may lead
to an electron being excited first to the resonant bound state before being finally ionized.
Ionization or excitation from low radiation intensity is predominantly resonant and the
probability of the multiphoton processes is very low and this is in agreement with the
lowest order perturbation theory (LOPT). But in intense radiation fields, the atomic
states exhibit ac-Stark shifts and broadening. Resonant ionization in very intense laser
fields where the ac-Stark shifts of the states become comparable with the photon energy
was first observed in the experiment of Freeman et al. [44]. Resonant population of
AC-Stark-shifted Rydberg levels of an atom with an integer number of laser photons
leads to resonant enhancement of the ionization yield, and results in the appearence of
sub-structures within the low-energy above-threshold-ionization (ATI) peaks, known as
Freeman resonances [44, 45]. Since high-lying Rydberg levels experience ponderomotive
shifts that are very similar of the ponderomotive shift of the ionization continuum, the
position of these resonant features in the photoelectron energy spectrum is independent
of the temporal and spatial profile of the laser puse, including the peak laser intensity,
and depends only on the photon energy and the number of photons absorbed [45].

2.1.2 Non-resonant Multiphoton Ionization

Non-resonant ionization is supposed to occur if the excitation energies of the intermediate
states with proper parities are far detuned from multiples of the photon energy N~ω [43].
Usually at non-resonant intensities the ionization probability is lower whereas resonant
ionization is characterized by a strong electron signal at a definite electron energy at
the resonance intensity. The non-resonant multiphoton ionization is characterized by
intensity dependent peak shifting [46] implying that non-resonant processes may become
resonant and vice versa as the laser intensity is changed [47].

2.2 Above Threshold Ionization

This is one of the most interesting effects in the investigation of multiphoton ionization
(MPI) of atoms, molecules or ions by intense laser light. In this process, the system
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(atom, molecule or ion) absorbs one or more photons above the minimum number re-
quired to overcome the ionization potential [44, 48]. This effect has been extensibly
discussed in the previous decades [33, 49, 50]. The relevant photoelectron energy spec-
trum consists in equally spaced intensity dependent peaks whose amplitudes decrease
monotonically. The separation between the peaks is equal to a single photon energy.

Figure 2.3: (An extract from ref. [51]). Angle and spin resolved ATI photoelectron energy
spectrum for xenon atoms. The laser polarization (a) parallel (θ = 0◦), (b) perpendicular
(θ = 90◦) to the detection angle. The peaks are labelled according to the value of spin S with
a prime for the P1/2 configuration.

Figure 2.3 shows the angle and spin resolved ATI peaks of the photoelectrons resulting
from the experimental measurement of the ionization of xenon atoms [51]. A radiation
of photon energy 2.34 eV corresponding to six-photon ionization of the xenon atoms was
used in this experiment. The photoelectrons were collected parallel and perpendicular
to the polarization of the electric field vector of the laser. The peaks are labelled by the
number of photons absorbed above the minimum necessary for ionization. The 0th peak
corresponds to the threshold number of photons necessary for multiphoton ionization.
The number of peaks beyond the 0th corresponds to the extra photons absorbed, beyond
the minimum, for the ATI process. A prime is used in the figure to label the peaks
originating from the 2P1/2 core configuration.

The above-threshold-ionization (ATI) distribution is consistent with the classical pic-
ture. The distribution has a first cut-off energy at 2Up followed by a flat plateau which
emerges at 2Up and extends up to a second cut-off energy of 10Up [52]. The 2Up cut-
off is a result of direct electrons while the plateau and the 10Up cut-off are effects of
backscattering of the ionized electrons off the core [9].

For intense picosecond and subpicosecond pulses, it is known that the low-energy ATI
peaks break up into a series of narrow lines. The origin of these structures is ascribed
to resonances induced by the field [44]. A system in an intense low-frequency radiation
field experiences an ionization potential (Ip) increase of Up.

There have been some key challenges in the experimental measurement of the ATI
process. First, it is almost impossible to measure an instantaneous intensity in Fourier-
limited pulses currently available and the intensity generated by the spikes of multimode
nanosecond laser pulses can only be estimated [53]. In order to solve this problem, many
experimentalists opt to reference the intensity used in any given experiment relative to
the saturation intensity of the MPI process under study [53]. This permits a compari-
son among different experiments after correcting pulse length differences when they are
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measurable.
Second, the effect of space charge also poses a serious difficulty in ATI experiments [54].

The MPI process creates a plasma of ions with thermal velocities and electrons whose
velocity is determined by the energy that they have gained in the interaction. Some
of the electrons released in the ATI process leave the interaction volume much faster
than others, leaving behind them a net positive charge that can deviate or trap slower
electrons, leading to changes in the electron spectra [41]. These changes are of the same
nature as the suppression of low-energy electron peaks and the magnitude of the effect
depends on the spreading of the spectrum. Space charge effects are reduced by working
with as few ionization events as possible in the interaction volume and using a highly
efficient technique for collecting electrons [54]. This consequently leads to the problem
of obtaining small ionization signals at high intensities. which is done by decreasing the
atomic density as much as possible, taking ionization of background gases into account,
and reducing the interaction volume.

2.2.1 Intensity Dependence of ATI

It has been shown in many theoretical and experimental studies that when the laser
intensity is increased beyond the threshold necessary for observing the multiphoton ion-
ization, more and more ATI electron peaks appear as a consequence of the electrons with
very high kinetic energies [53]. The different ATI peaks for these high intense radiations
tend to have comparable orders of magnitude. Observations and interpretations of ATI
can be viewed on the basis of the perturbative character of the process. If the laser in-
tensity is increased but not exceeding the perturbative intensity limits, ATI appears first
as a correction to the normal multiphoton ionization (MPI) process. Additional peaks
in the photoelectron energy spectrum then appear acting as an experimental signature
of the ATI process. The effect of these additional peaks remain as a small contribu-
tion to the total ionization yield. The amplitudes of the additional peaks decrease with
the increase in the order of the process. At the lower energy end of the spectrum, one
may observe the disappearance (suppression) of low-energy electron peaks and the inten-
sity dependences of the rates which strongly deviate from the lowest-order perturbation
theory (LOPT) predictions [55]. The peak suppression feature is explained to be a con-
sequence of the ponderomotively shifted binding energy leading to an increase in the
number of photons required for photoionization. This is the basis of channel switching
(also called channel closing) effect discussed in the following section.

2.2.2 Wavelength Dependence of ATI

The measurement of photoelectron spectra at a limited range of laser intensities and at
a fixed wavelength (usually 800 nm) is commonly used in ATI studies. However, the
measurement of wavelength-dependent ATI photoelectron spectra may open up features
that may be invisible for a fixed wavelength. For example, Rottke et al. [43] observed
channel switching from a 6- to 7-photon resonant ionization in Xe by varying the laser
wavelength between 592 nm and 616 nm and measuring the energy and angle resolved
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photoelectron distributions. Channel switching effects have also been observed in the
measurements of 2D photoelectron momentum spectra resulting from the ATI of Xe and
Ar in a wide range of wavelengths in between 600 nm and 800 nm [45]. Also, Kaminski et

al. [56] observed the transition between resonant and non-resonant ionization channels
and identified the excited states involved in the ionization process by varying both the
wavelength between 500 − 650 nm and the intensity between 1012 − 1013 Wcm−2 and
measuring the corresponding photoelectron energy and angular distributions.

2.2.3 Pulse Length Dependence of ATI

Above-threshold-ionization processes have quite distinctive features depending on the
pulse duration. A photoelectron emitted in intense radiation would have its launching
kinetic energy reduced by the ponderomotive energy, although a sufficiently long pulse
would compensate this lost energy as it accelerates within the optical field due to the
raised ionization potential. This means that for sufficiently long pulses, a photoelectron
converts the ponderomotive energy into kinetic energy as it exits from the interaction
volume making it virtually impossible to observe the effects of the Ip shift on the energy
spectra in the long-pulse ATI experiments. The pulse length therefore dictates the
fraction of the kinetic energy recovered as an electron accelerates in the ponderomotive
field when it exits the interaction volume. Consequently, the ATI processes can be
classified into short and long pulse regimes. An ATI experiment is considered to be
in the long-pulse regime if the duration of the ionizing radiation is long compared to
the time it takes a photoelectron to leave the interaction volume [44]. Otherwise the
experiment is considered to be in the short pulse regime.

In the short pulse regime, there is not enough time for the photoelectron to accelerate
before the pulse leaves. Thus in the limit of very short pulse duration, the photoelectron
energy spectrum records the actual photoelectron energies and angular distributions at
the moment of ionization [44]. In the experimental studies in the long-pulse regime, it
has been shown that the number [46, 49] and the intensity of the peaks in the electron
spectra [53, 57, 58], their angular distributions [59], and the peak widths [53] all depend
upon the intensity of the ionizing radiation, but the recorded electron energies are nearly
independent of intensity [44]. This independence arises from the fact that there exists a
nearly complete cancellation of the ponderomotive energy by the gain in kinetic energy of
the electron from ponderomotive acceleration as it leaves the interaction volume [60]. In
the short-pulse regime, where the duration of the ionizing laser pulse (typically τpulse < 1
ps) is shorter than the time it takes a photoelectron to leave the interaction volume, the
absolute position of the ATI peaks in the photoelectron energy spectrum depends on the
the value of the ponderomotive energy Up [61] and consequently on the laser intensity
[45].

2.3 Tunneling Ionization

Tunneling ionization can be explained using the fact that when an electric field is applied
to an atom (or any system) the symmetric atomic potential is deformed creating a
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barrier through which an electron can tunnel. Figure 2.4 illustrates the bending of
the Coulomb potential by an applied field leading to tunneling and over-the-barrier
ionization. Various theoretical models have been developed ranging from the Wentzel-
Kramers-Brillouin (WKB) quasi-classical approximation [62–64], Landau-Lifshitz [65],
Peremolov-Popov-Terent’ev (PPT) [66–68], to Ammosov-Delone-Krainov (ADK) [69] to
estimate the tunneling ionization rates.

Figure 2.4: (An extract from ref.[35]). A pictorial representation of tunnel and over-the-
barrier ionization. The black curves represent the field-free Coulomb potential. The Coulomb
potential is modified by the applied field as shown by the red curve. The tunnelling process
is illustrated by the green arrow. If the field exceeds a critical value, the Coulomb poten-
tial is excessively deformed as shown by the blue dotted lines and the tunnelling process is
transformed to over-the- barrier ionization.

2.4 Over-the-Barrier Ionization

If the radiation field is too strong, the Coulomb potential barrier is completely suppressed
as shown in figure 2.4 leading to an over-the-barrier (OTB) ionization, alternatively
called the barrier-suppression ionization (BSI). Such strong fields cause the perturbed
energy of the initial atomic state to exceed the maximum of the effective potential barrier
thereby freeing the bound electrons [70]. Barrier-suppression ionization is a classical
threshold effect since the effective potential is zero at the onset of OTB. OTB was first
studied by Augst et al. [71] who used a neodymium laser with 1.053µm wavelength
and radiation intensity ranging from 1013 − 1016 Wcm−2. Depending on the laser focus
location, the ionization was sometimes tunneling and at other times barrier-suppression.
In contrast to tunneling, in OTB the electric field amplitude F0 exceeds a critical value
FOTB = I2

p/4Z [72] which is necessary in order to permit the bound electron, with the
ionization potential Ip and charge of the atomic core Z, to escape without tunneling.

2.5 Low- and Very Low-Energy Structures

These are characteristic spike-like structures, similar to the ATI peaks but at very low
electron energies, which become prominent in the photoelectron energy distribution of
atoms and molecules irradiated with intense mid-infrared laser wavelengths in the deep
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tunneling regime and are observable in all atoms and molecules [73–75]. The low-energy
structures (LES) are classified to span the 1 − 20 eV regime [73] in the photoelectron
energy spectrum (PES) while the very low-energy structures (VLES) occur below 1
eV [52]. (V)LES are considered as the low energy features of ATI usually contrasted to
plateaux in the same ATI which are high energy features emanating from the rescattering
of ionized electrons. Investigation of the physical origin of these structures is still a
subject of scientific debate with suggestions pointing the effect to be a consequence of
the long-range Coulomb interaction in the tunneling regime [52, 74] although reference
[76] concludes that LES exists in principle for any potential as long as there is scattering.

2.6 Stabilization

Stabilization refers to a decrease in or saturation of the total ionization yield of an atom
or molecule as the laser intensity increases [77]. Atomic stabilization is fundamentally a
non-perturbative concept meaning that it arises at the laser parameter regimes beyond
the limits of perturbation theory. The lowest-order perturbation theory (LOPT) predicts
that multiphoton ionization rates that steadily increase with intensity while a direct
non-perturbative treatment of the Schrödinger equation establishes that the LOPT-
predicted increase in ionization levels off at some intensity, and the reverse trend sets
in resulting into lower ionization yields at a higher intensity. Stabilization can generally
be classified into two categories: Quasistationary (adiabatic) stabilization which refers
to the stabilization which scales with the magnitude of the optical field and dynamic
stabilization which refers to the stabilization emanating from the temporal aspects of
the pulse. Although stabilization is prominently known for strong-field interactions
where the photon energy is comparable to the atomic potential [78], the possibility
of stabilization at low frequencies has been experimentally realized and explained to
be a consequence of frustrated tunnelling ionization [79]. The Kramers-Henneberger
(KH) frame, the moving coordinates frame of a free electron responding to the laser
field, is a natural choice to discuss stabilization. In this frame, the ground-state wave
function of the system splits into two non-overlapping peaks and the system becomes
stabilized against ionization when the laser frequency is much higher than the bound
state frequency of the system [80].

2.7 High-Harmonic Generation

High-harmonic generation (HHG) [81] is the production of strong coherent energetic
beams of light when a lower-frequency coherent optical fields interact with atoms,
molecules, ions, or clusters. The origin of the HHG is explained by the Corkum’s three
step model [9]. First, electron wavepackets are launched by strong-field ionization. The
acceleration of the ejected electrons follows, and then their re-collision with their parent
ions gives rise to coherent radiation with frequencies which are integral multiples of the
driving frequency. Such radiation can be used to provide detailed information about
electronic structure [10], to probe the dynamics of atoms in molecules [82], and to image
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the spreading of free and bound electron wavepackets in the generated ionic species [83].
HHG, just like ATI, is a consequence of non-linear response of matter to intense laser
fields. The production of harmonics is apparently dominant in the multiphoton regime
but declines in strength as intensities exceed the critical value for the barrier-suppression
ionization regime [84].

2.8 Non-Dipole Effects

The dipole approximation in relative coordinates assumes that the spatial extent of
an electron wavepacket from the centre of mass is very small in comparison to the
wavelength of radiation interacting with the system and therefore the retardation term
eik·r can be approximated to unity. This assumption may be justified in cases where
the wavelength of the radiation is long and satisfies the inequality condition r ≪ λ or
where the intensity of the radiation is low and hence the excursion radius is assumed
to be negligibly small. Interestingly, this approximation has been quite successful in
reproducing several dynamical features in light-matter interactions leading to its wider
applicability even in cases where the stated assumptions may not be valid. Figure 2.5
shows an illustration of the wavelength-intensity parameter space illustrating the limits
of the expected validity of the dipole approximation (dipole oasis) [85] in strong-field
physics. The tunnel oasis region is depicted as a sub-space of the dipole oasis where the
concept of tunnelling may be valid.

The parameter zf = 2Up/mc
2 = 1 in figure 2.5 demarcates the line where strong rel-

ativistic effects are expected. The parameter β0 = Up/2mcω = 1 a.u. marks the be-
ginning of the region where the contribution of the magnetic field would be important
in treating laser-matter dynamics. Non-dipole effects can alternatively be assessed by
considering the momentum and energy of a motion induced by radiation pressure [86].
The kinetic energy corresponding to this momentum is given in non-relativistic form as
KEradp = U2

p /2mc
2 = 0.5 a.u. The low-frequency dipole approximation limit therefore

arise from the constraints evaluated by examining radiation pressure effects in terms
of displacements due to the magnetic component of the laser field or directly from the
kinetic energy due to radiation pressure effects. On the other hand, the high frequency
(upper dipole) limit for which the dipole approximation is applicable was already defined
by Göppert-Meyer [26] as λ ≥ 1 a.u.

While most theoretical strong-field studies have been concentrated on the spatially
independent dipole approximation, there have been some previous efforts to incorpo-
rate the non-dipole effects in intense laser fields dating back to more than two decades
[12, 13, 87]. The results of these non-dipole effects, although for different laser pa-
rameters, have been quite diverse, some reporting a breakdown of the dipole approx-
imation [12, 13, 88, 89], some observing new structures in the photoelectron angular
distribution[90–92], and others predicting negligible contribution of these effects [93, 94].
The relative contribution of the non-dipole A2(r, t) in comparison to the non-dipole
A(r, t) · p at different wavelengths and field amplitudes has also been a subject of con-
flicting viewpoints. One group finds the former to be dominant [90, 91, 95] while the
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Figure 2.5: (An extract from [85]). Left: Illustration of the wavelength-intensity parameter
space in strong-field ionization scaling limits, taking the magnetic field component into ac-
count. Right: The area where the dipole approximation is considered as valid (dipole oasis)
is depicted as the region enclosed by the blue dashed line. The well-known short-wavelength
(upper dipole) limit arises for wavelengths on the order of the atomic scale, i.e., for λ = 1
a.u.. The long-wavelength limit arises due to the laser magnetic field component, and is
characterized by the ratio Up/2ωc = 1 a.u. [85].

other finds the latter to be dominant [92, 93, 96]. Note that for reasons of computational
convenience, Bugacov, Pont, and Shakeshaft [12] were the first to ignore the contribution
of the non-dipole A(r, t) · p interaction. They justified the approximation by reasoning
that a considerable computer time was demanded when carrying out calculations at very
high intensities, a fact which is confirmed in this study. Besides the controversy sur-
rounding the non-dipole effects, their contribution in reducing the stabilization of atoms
in intense short wavelength fields was first pointed out by Katsouleas and Mori [97] and
subsequently confirmed [13, 91, 98, 99]. Incorporating the magnetic field component in
the interaction dynamics and the relativistic mass shift have been found to be compara-
ble and each of these effects lead to a decrease in plateau height and a shift of the cut-off
energy of the ATI spectrum to lower energies [100]. Also, the non-dipole effects have
also been found to enhance low- and very low-energy structures prevalent in strong-field
photoionization of atoms and molecules [91]. At higher radiation intensities, the mag-
netic field induced drift in the propagation direction prevents the electron from exactly
revisiting the ionic core and consequently reduces the rescattering probability [101, 102].
This has a direct consequence on the high-harmonic generation, non-sequential photoion-
ization, and above the threshold ionization processes which depend on the rescattering
probability.

Although diverse theoretical approaches have been used to analyze these strong-field
effects, one of the things that many researchers have employed in common is the use
of the Taylor approximation of the retardation term eik·r [18] to include the non-dipole
effects. It is well known that this approximation may not be quite reliable at lower
multipole orders especially for short wavelength radiation but inclusion of many orders
may also be quite expensive computationally. Therefore, the need for a better expansion
for this retardation term has been an open question. The Rayleigh multipole expansion
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of the plane wave retardation term using the spherical Bessel functions and spherical
harmonics [20, 103]may provide a useful alternative to the Taylor expansion when em-
ployed. Bugacov, Pont, and Shakeshaft [12] already noted that the use of this multipole
expansion may be more accurate, although they preferred Taylor expansion in their work
because of the convenience of evaluating the transition matrix elements.

In this study, the non-dipole effects are evaluated in the ionization dynamics of atoms
interacting with intense field short duration laser pulses. This is done by first comparing
the expansions of the spatial retardation term using both the Rayleigh and the Taylor
plane-wave expansion series. The use of the Rayleigh plane-wave multipole expansion,
which employs the regular spherical Bessel functions, is found to be more accurate and
efficient in computational time. The Rayleigh expansion also incorporates the contribu-
tion of higher-order terms which are quite expensive to obtain if the Taylor expansion is
employed. Besides, it is found that for the laser parameters employed in our calculations,
the effect of non-dipole A(r, t) · p interaction is dominant over that of A2(r, t) interac-
tion. This is in line with the quantum predictions that the paramagnetic contribution of
the magnetic field component is more dominant over the diamagnetic contribution [18].
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In atomic structure studies as well as the response of the atomic, molecular, and ionic
systems to an external electromagnetic field, the computational aspects are among the
most crucial [104]. The basic processes in the electromagnetic field-matter interactions
may lead to excitation, ionization, or elastic scattering of the target system with the lat-
ter leaving the state of the system unchanged. The advent of strong laser fields has lead
to a lot of investigations focussing on photoionization processes. In strong-field interac-
tions, one or more photon transitions have a significant contribution to ionization. The
basic photoionization process concerns an atomic, molecular, or ionic system in a bound
eigenstate (usually in ground state) irradiated by a strong electromagnetic field leaving
it in final states belonging to the continuous spectrum. The field-matter interactions can
be described quantum mechanically by solving the time-dependent Schrödinger equation
(TDSE) in the non-relativistic regime if the electron spin contributions are not signif-
icant. In the relativistic regime, the interactions can be described by the time depen-
dent Dirac equation (TDDE). In this study, the interaction process using the radiation
(Coulomb’s) gauge treatment is described but with the possibility of transforming to the
conventional length and velocity gauges. The spatial phase retardation term e(ik · r) in
the vector potential describing the interaction process is expanded to include the con-
tribution of the higher-order non-dipole terms. The numerical framework employed in
the beyond-the-dipole solution of the TDSE is described in this section. The chapter
begins by giving a brief outline of some of the relevant mathematical concepts implicitly
or explicitly embedded in the implementation as well as other alternative theoretical
methods.

3.1 Mathematical Framework

In this subsection, some of the underlying fundamental mathematical concepts necessary
in the understanding of our implementation are highlighted. These include the discussion
of B splines [14, 105–107], Legendre and associated Legendre polynomials, spherical
harmonics, spherical Bessel functions [103], and a method for solving ordinary differential
equations. The spectral method adopted in this study to solve the field-free Schrödinger
equation for a single electron system in a central potential using B splines is specifically
discussed.

3.1.1 B Spline Basis Sets

B splines are defined as piecewise polynomials and are originally introduced by deBoor
[105]. Because of their interesting properties, their use in theoretical atomic physics to
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construct finite basis sets is gaining prominence over the use of global basis sets such as
Gaussian or Slater-type orbitals. A better understanding of B splines and their use in
atomic physics is discussed in detail in the review articles [106, 107] and Yulian Vanne’s
PhD thesis [14]. B splines offer the following advantages. First, the banded nature of
the matrices to be diagonalized allows for the generation of very large basis sets with
no complication from linear dependence. Second, the flexibility to choose the radial
grid points between which the B splines are defined can allow accurate description of
the bound or continuum states. This is done by either selecting a dense exponential
or geometric spacing between the knot points for the bound states, and a linear sparse
spacing for the continuum states. Third, the code involved is relatively simple and the
related integrals, comprising only polynomials, can be evaluated to machine accuracy
with Gaussian integration. These make B splines to be accurate and easy to set up finite
basis set with wide utility. B splines were first used in atomic physics by Shore [108] up
to cubic order.

In the construction of B spline basis set, the number n of the basis-set elements and
the order k of the B splines is pre-determined. As prescribed by deBoor [105], the finite
interval [0, Rmax] is divided into segments. The end points of such segments are given
by the knot sequence

{ti}, i = 1, 2, · · · , n+ k. (3.1)

The B splines Bi,k(r) of the order k are defined recursively on this knot sequence by the
relations

Bi,1(r) =

{

1, ti ≤ r < ti+1

0, otherwise
(3.2)

and

Bi,k(r) =
r − ti

ti+k−1 − ti
Bi,k−1(r) +

ti+k − r

ti+k − ti+1
Bi+1,k−1(r). (3.3)

The function Bi,k(r) is a piecewise polynomial of degree k − 1 with a non-vanishing
value inside the interval ti ≤ r < ti+k and a vanishing value outside the interval. Efficient
FORTRAN codes which evaluate these functions and their derivatives already exist in
many numerical libraries. The sum of all the non-vanishing B splines at any point r is
unity. The set of B splines of order k on the knot sequence {ti} forms a complete basis
for piecewise polynomials of degree k− 1 on the interval spanned by the knot sequence.
The knots defining the B spline grid have k-fold multiplicity at the end of the points
0 and rmax. That is, t1 = t2 = · · · = tk = 0 and t1+k = t2+k = · · · = tn+k = rmax

at 0 and at rmax respectively. The multiple knot sequences at the end points require
the use of the limiting forms of the B spline recursive relation. For k > 1 at the end
points, the B splines are conditioned to vanish with only the B1,k(r) and Bn,k(r) having
unitary values at 0 and at rmax respectively. The boundary conditions can then be
set based on the end point behaviour of the B spline functions. The knot sequence
{ti=k,··· ,n} can be arbitrarily chosen provided that they increase monotonically. In the
implementation in this study, the use of a combination of a geometrically and a linearly
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Figure 3.1: (An extract from Vanne [14]). Full sets of 11 B splines of order k = 4 defined for
the knot sequence {xi} = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8, 8}.

increasing knot sequence is preferred in order to have a good description of both the
bound and continuum states [14].

Figure 3.1 shows 4th order B splines spread over a linear knot sequence with the end
points each having multiplicities of four. It can can be seen that between any two succes-
sive breakpoints, marking an interval, there are four non-zero B splines corresponding to
the order. Since B spline functions are kth order polynomials, evaluating their derivatives
is rather straight forward and results in no singularities which may cause computational
challenges. The first derivative is of order k − 1, the second derivative is of order k − 2,
and the nth derivative is of order k−n provided that n < k−1. In general, the following
points give a summary of the properties of B splines that we have taken advantage of in
our spectral implementation.

• The 1st derivative of a B spline Bi(r) can also be expanded recursively as

dBk
i

dr
(r) =

k − 1

ti+k−1 − ti
Bk−1

i (r) − k − 1

ti+k − ti+1
Bk−1

i+1 (r) (3.4)

• Bi(r) 6= 0 for j = ik + 1, · · · , i or in other words Bi(r) 6= 0 for rǫ(ti, ti+k) meaning
that between any consecutive breakpoint sequence, there are exactly k non-zero B
splines.

• Any function f(r) can be expanded as a linear combination of B splines as

f(r) =
n
∑

j=1

cjBj(r) =
i
∑

j=i−k+1

cjBj(r) for r ǫ [ti, ti+1]. (3.5)

This shows that one always has only k terms contributing and therefore only a
minimal number of operations is needed. B splines are therefore non-negative with
minimal support. The expansion coefficients of any arbitrary function f are close
to the function values at the breakpoints. This means that wild oscillations in the
coefficients are avoided, cancellation errors are minimized, and numerical stability
is enhanced.
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• The sum
∑

j Bj(r) = 1 over the interval [ti, ti+k−1], hence B spline basis sets are
normalized.

• B splines are discontinuous at the end points. That is, B1(r) = 1, Bn(r) = 1, and
Bj(r) = 0 at r = a or r = Rmax for any 1 < j < n . This is useful in implementing
the boundary conditions.

• The product of B splines Bi(r)Bj(r) = 0 for |i− j| ≥ k. This shows that every B
spline overlaps with a limited number of other B splines. The sparsity property B
spline basis set matrices is embedded in this limited overlap number of B splines.

• The integral 〈Bi(r)B′j(r)〉 = −〈B′i(r)Bj(r)〉 where B′j(r) = dBj(r)/dr. This inte-
gral relation can be easily verified using integration by parts and the boundary
conditions imposed on the B splines.

• Likewise, the integral 〈Bi(r)B′′j (r)〉 = −〈B′i(r)B′j(r)〉 where B′′j (r) = dB′j(r)/dr.

In approximating analytic functions, higher-order B splines, typically k = 7 − 10, are
highly recommended because of their compatibility with numerical stability and round-
off errors [107]. The error can be estimated using the relation

ε = ∼
hk

j

k!
|Dkf(rj)| (3.6)

where hj is the width of the interval Ij , rj ǫ Ij , and Dk is the kth derivative of a function
. The advantage here is that the error can be controlled here by the step size.

3.1.2 Legendre Polynomials

The Legendre’s differential equation has the form [103]

(1 − x2)y′′ − 2xy′ + l(l + 1)y = 0 (3.7)

where y′′ and y′ are the second and the first derivatives of the variable y with respect
to x respectively and l can in principle be any real number. The equation has three
regular points, at x = −1, 1,∞. Equation (3.7) is usually arrived at in numerous physical
situations, particularly in problems having axial symmetry involving the ∇2 operator if
they are expressed in spherical polar co-ordinates. In normal usage the variable x in
the Legendre’s equation is the cosine of the polar angle, and thus −1 ≤ x ≤ 1. In such
physical situations, the parameter l takes integer values l = 0, 1, 2, · · · representing the
orbital angular quantum numbers.

Like many other second order ordinary differential equations, the Legendre equation
has a power-series solution,

y =
∞
∑

l=0

al x
l, (3.8)
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with the coefficients al satisfying the recurrence relation

al+2 =
[l(l + 1) − l(l + 1)]

(l + 1)(l + 2)
al = 0. (3.9)

From this recurrence relation, one can clearly see that the summation in the power series
solution only contains two terms, y = a0y0(x) + a1y1(x), while the other terms vanish.
This reduces the general solution of the Legendre’s equation (3.7) to the form

y(x) = c1Pl(x) + c2Ql(x) (3.10)

where Pl(x) and Ql(x) are the normalized forms of y0(x) and y1(x) referred to as the
Legendre polynomial of the first kind and Legendre polynomial of the second kind re-
spectively. Pl(x) is usually a finite polynomial of order l and so it converges for all x
where as Ql(x) is an infinite series that converges for only |x| < 1. The physical situa-
tions considered in this work require the solution of the Legendre equation y(x) to be
regular at x = ±1 which corresponds to θ = 0 or θ = π polar angles in the case of +
and − values of x respectively. This requires a polynomial solution and therefore l has
to be an integer and the coefficient c2 of the Legendre polynomial of the second kind
Ql(x) has to vanish since Ql(x) is singular at x = ±1. This reduces the solution of the
Legendre equation in the case of our interest to be simply a multiple of the relevant
Legendre polynomial Pl(x). The first few Legendre polynomials can be written as

P0(x) = 1

P1(x) = x

P2(x) =
1

2
(3x2 − 1)

P3(x) =
1

2
(5x2 − 3x)

(3.11)

The Legendre polynomials can be generated using the Rodrigues’ formula

Pl(x) =
1

2l l!

dl

dxl
(x2 − 1)l (3.12)

and they have the following properties:

• They have a simple recurrence relation

(l + 1)Pl+1(x) = (21 + 1)xPl(x) − lPl−1(x) (3.13)

which makes it easy to generate higher order Legendre polynomials as long as the
first two are specified.

• They satisfy the normalization condition

2l + 1

2

∫ 1

−1
Pl(x)Pl(x) dx = 1 (3.14)
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3 Non-relativistic Solutions of the TDSE

• They are mutually orthogonal to each other, that is,

∫ 1

−1
Pl(x)Pk(x) dx = 0, if l 6= k. (3.15)

• The orthogonality and normalization conditions satisfied by these polynomials
makes it possible to express any reasonable function f(x)

f(x) =
∞
∑

l=0

al Pl(x) (3.16)

in the interval |x| < 1 as an infinite sum of the Legendre polynomials where the
coefficients are given by

al =
2l + 1

2

∫ 1

−1
f(x)Pl(x) dx (3.17)

3.1.3 Associated Legendre Functions

The associated Legendre equation has the form [103]

(1 − x2)y′′ − 2xy′ + [l(l + 1) − m2

1 − x2
]y = 0 (3.18)

which has three singular points at x = −1, 1,∞. It reduces to the Legendre equation (3.7)
when m = 0. This equation also occurs in physical situations involving the operator ∇2,
if expressed in spherical polar co-ordinates. In such cases, −l ≤ m ≤ l and m is restricted
to integer values. As with the case of the Legendre equation, in normal use the variable x
is the cosine of the polar angle in spherical polar co-ordinates. Any solution of equation
(3.18) is called an associated Legendre function.

The solutions y|m|(x) to the associated Legendre equations can be derived from the
known solutions of the Legendre equation u(x) using the relationship

y|m|(x) = (1 − x2)
|m|

2
d|m|u(x)

dx|m|
. (3.19)

For the physical situations we are interested in, l and m are both integers and the
general solution to equation (3.18) is denoted by

y|m|(x) = c1P
m
l (x) + c2Q

m
l (x) (3.20)

where Pm
l (x) and Qm

l (x) are the associated Legendre functions of the first and second
kind respectively. For non-negative m values, the associated Legendre functions are
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related to the ordinary Legendre functions for integer l by

Pm
l (x) = (1 − x2)

|m|
2
d|m|Pl(x)

dx|m|

Qm
l (x) = (1 − x2)

|m|
2
d|m|Ql(x)

dx|m|

(3.21)

Just like the Ql(x), the Qm
l (x) are singular at x = ±1 and therefore their coefficients

have to vanish in the cases of our interest. Some of the associated Legendre polynomials
are given by

P 1
1 (x) = (1 − x)

1
2

P 1
2 (x) = 3x (1 − x)

1
2

P 2
2 (x) = 3x (1 − x2)

(3.22)

The associated Legendre polynomials

• are mutually orthogonal over the interval −1 ≤ x ≤ 1, that is,

∫ 1

−1
Pm

l (x)Pm
k (x) dx = 0 if l 6= k

∫ 1

−1
Pm

l (x)P k
l (x) (1 − x2)−1 dx = 0 if |m| 6= |k|

(3.23)

• satisfy the normalization conditions

Il,m =
∫ 1

−1
Pm

l (x)Pm
l (x) dx =

2

2l + 1

(l +m)!

(l −m)!

Il,m =
∫ 1

−1
Pm

l (x)Pm
l (x) (1 − x2)−1 dx =

(l +m)!

m(l −m)!

(3.24)

• have a wide range of recurrence relations

Pm+1
l (x) =

2mx

(1 − x2)
1
2

Pm
l (x) + [m(m− 1) − l(l + 1)]Pm−1

l (x),

(2l + 1)xPm
l (x) = (l +m)Pm

l−1(x) + (l −m+ 1)Pm
l+1(x),

(2l + 1)(1 − x2)
1
2Pm

l (x) = Pm+1
l+1 (x) − Pm+1

l−1 (x),

2(1 − x2)
1
2
dPm

l (x)

dx
= Pm+1

l (x) − (l +m)(l −m+ 1)Pm−1
l (x)

(3.25)

due to the presence of the two indices, l and m.
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3.1.4 Spherical Harmonics

Usually if physical problems are expressed in spherical polar co-ordinates, a solution

y(r) = R(r) Θ(θ) Φ(φ) (3.26)

separable in the three co-ordinates r, θ, and φ may be assumed for spherically symmetric
potentials. In principle, the angular parts, Π(Ω) = Θ(θ) Φ(φ), can be evaluated together
by expressing them as a linear combination of spherical harmonics, Y m

l (θ, φ) 1, defined
as

Y m
l (Ω) = (−1)m

[

2l + 1(l −m)!

4π(l +m)!

]

1
2

Pm
l (cos θ) exp(imφ) (3.27)

where Ω = (θ, φ) denote a solid angle and l and m are the orbital and projection angular
momentum quantum numbers and Pm

l (cos θ) are the associated Legendre polynomials.
Spherical harmonics have unique properties that are quite useful in solving problems

in atomic physics. These properties include:

• the symmetry relation

Y −m
l (θ, φ) = (−1)mY m∗

l (θ, φ) (3.28)

where the asterisk denotes complex conjugation

• the ortho-normality relation

∫ 1

−1

∫ 2π

0
Y m∗

l (θ, φ)Y
′m

l′ (θ, φ) dφ d(cos θ) = δll′ δmm′ (3.29)

• the closure relation
∑

l,m

Y m
l (Ω)Y m∗

l (Ω′) = δ(Ω − Ω′) (3.30)

where δ(Ω − Ω′) is a Dirac delta function with a zero value if Ω 6= Ω′ .

• the reduction relation

∑

l,m

Y m
l (Ω)Y m∗

l (Ω′) =
∑

l

2l + 1

4π
Pl(cos θ) (3.31)

where θ is the overlap angle between the two solid angles

• the integral relation

∫ 1

−1

∫ 2π

0
Y m∗

l (θ, φ)Y µ
k (θ, φ)Y

′m
l′ (θ, φ) dφ d(cos θ)

=
(2l + 1)(2k + 1)(2l′ + 1)

4π

(

l k l′

m µ m′

)(

l k l′

0 0 0

) (3.32)

1Different conventions for defining the spherical harmonics exist.
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where the brackets denote the Wigner-3j symbols. These can equivalently be ex-
pressed using the Clebsch-Gordan coefficients [20].

3.1.5 Spherical Bessel Functions

The Spherical Bessel functions are obtained from the solutions of the Helmholtz’ equa-
tion, (∇2 + k2) = 0, in spherical polar co-ordinates [103]. For solutions that are finite
on the polar axis, the radial part R(r) of the solution must satisfy the equation

r2R′′ + 2rR′ + [k2r2 − l(l + 1)]R = 0 (3.33)

where l is an integer and the primes denote the derivatives with respect to r. This
equation looks very much like Bessel’s equation and can in fact be reduced to it by
writing R(r) = r−

1
2S(r), in which case S(r) satisfies

r2S′′ + rS′ + [k2r2 − (l +
1

2
)2]S = 0. (3.34)

With a further change of variable x = kr and letting y(x) = S(kr), one obtains

x2y′′ + xy′ + [x2 − (l +
1

2
)2] y = 0 (3.35)

which is a Bessel’s equation of order l + 1
2 with the general solutions of the form, Jl+ 1

2
(x)

and Yl+ 1
2
(x). These solutions are known as ordinary Bessel functions of the first and

second kind, respectively.

The general solution of equation (3.33) can therefore be written as

R(r) = r−
1
2 [c1Jl+ 1

2
(kr) + c2Yl+ 1

2
(kr)] (3.36)

where c1 and c2 are constants that have to be determined from the boundary conditions
imposed on the solutions. In particular, for solutions that are finite at the origin, we
require that c2 = 0. The functions, x−

1
2Jl+ 1

2
(x) and x−

1
2Yl+ 1

2
(x), when suitably normal-

ized, are called the spherical Bessel functions of the first and second kind respectively.
They are expressed in terms of the corresponding ordinary Bessel functions as

jl(x) =

√

π

2x
Jl+ 1

2
(x)

ηl(x) =

√

π

2x
Yl+ 1

2
(x).

(3.37)
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The first two spherical Bessel functions of each kind are given by:

j0(x) =
sin x

x

η0(x) = −cosx

x

j1(x) =
sin x

x2
− cosx

x

η1(x) = −cosx

x2
− sin x

x

(3.38)

In general, spherical Bessel functions:

• of any order l can be obtained from the zeroth order function term using

fl(x) = (−1)l xl
(

1

x

d

dx

)l

f0(x) (3.39)

where fl(x) denotes jl(x) or ηl(x).

• satisfy the recurrence relations

d

dx
[xl jl(x)] = xl jl−1(x)

jl−1(x) + jl+1(x) =
2l

x
jl(x)

(3.40)

• can be expanded in the power series [109, 110]

jl(x) = xl
∞
∑

n=0

(−1)n x2n

2n n!(2n+ 2l + 1)!!
(3.41)

3.1.6 Solution of Field-Free Schrödinger Equation using B splines

In solving the TDSE, a spectral approach is followed in which the field-free Schrödinger
equation is first solved to generate the corresponding eigenvalues and eigenvectors. The
eigenvalues correspond to the system’s energy for the corresponding state vector. The
obtained state vectors are then used in evaluating time-independent transition matrix
elements which are subsequently used, together with the eigenvalues, in the time propa-
gation process. In this section, the method of using B splines to obtain the eigenvalues
and vector [14, 106] is explained. The discussion is confined to a one-electron system
with a central binding potential.

The Schrödinger equation for a one-electron system in the absence of any external
fields can be written as

[

−1

2
∇2 + V (r)

]

Ψ(r) = EΨ(r) (3.42)

where the first term on the left is the kinetic energy of the electron, V (r) is the central
binding potential of the electron, Ψ(r) is the electron’s wavefunction, and E is the
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total energy of the electron. The bracketed term on the left hand side constitute the
Hamiltonian operator of the system.

A spectral expansion of the total wavefunction

Ψ(r) =
∑

nlm

cnlm ψnlm(r) (3.43)

is considered, where ψnlm(r) is the wavefunction of a particular symmetry defined by
the principal quantum number n, orbital angular momentum quantum number l, pro-
jection angular momentum quantum number m, and having a unique energy Enlm. The
coefficient cnlm is a weighting function for the distribution and it takes unity value if the
electron is known to occupy a definite eigenstate and the other states remain unoccupied
and zero otherwise. Usually, the states with different m quantum numbers but same l
quantum number, in the absence of magnetic fields, have the same energy value and
they are referred to as degenerate states.

Each wavefunction ψnlm(r) can be conveniently written as product

ψnlm(r) = Rnl(r)Y
m

l (θ, φ) (3.44)

of the radial part Rnl(r) and the angular part in spherical harmonics Y m
l (θ, φ). The

radial part can further be expanded in a finite number of B spline functions Bi of a
predetermined order k

Rnl(r) =
Pnl(r)

r
=

nr−1
∑

i=2

ρnl
i

Bi

r
(3.45)

where ρnl
i are the weighting functions of each B spline for a particular value of n and l.

The subscript k has been omitted from Bi,k for notational simplicity. The first and the
last B splines are removed to be consistent with the boundary conditions requirement.
Pnl are solutions to the reduced radial Schrödinger equation

[

−1

2

(

d2

dr2
− l(l + 1)

r2

)

− Z

r

]

Pnl = EnlPnl (3.46)

with an explicit hydrogenic Coulomb potential −Z/r considered.
If the total wavefunction in equation (3.42) is considered to be from a definite single

quantum state and the inner product is taken , the angular part reduces to unity due
to the orthonormality condition of the spherical harmonics. The radial part of equation
(3.45), in the B spline expansion, takes the form

S =
∑

i,j

ρiρj

∫ rmax

0
dr

[

−1

2

(

Bj(r)
d2

dr2
Bi(r)

)

+Bj(r)
(

−Z

r
+
l(l + 1)

2r2

)

Bi(r)

]

− ǫnl

∑

i,j

ρiρj

∫ rmax

0
dr Bj(r)Bi(r)

(3.47)

where the inner product has been expressed in an equivalent variational equation which
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can be minimized using the condition δS = 0. In this case ǫnl plays the role of a Lagrange
multiplier introduced to ensure that the normalization constraint

∫ rmax

0
|Pnl(r)|2 = 1 (3.48)

for a given cylindrical symmetry n, l is satisfied. The variational principle δS = 0, to-
gether with the constraints δPnl(0) = 0 and δPnl(rmax) = 0, lead to the solution of the
radial Schrödinger equation for Pnl(r).

The action S in equation (3.47) is quadratic in ρi. A system of linear equations for
the expansion coefficients can be obtained by taking a partial derivative

∂S

∂ρi
= 0, i = 2, · · · , nr − 1. (3.49)

The resulting equations can be written in the form of a (nr − 2) × (nr − 2) symmetric
generalized eigenvalue equation

HC = ǫSC (3.50)

where C is the vector of expansion coefficients

C = (ρ2, ρ3, · · · , ρn−1) (3.51)

and the matrices H and S are given by

Hi,j =
∫ rmax

0
dr

[

−1

2

(

Bj(r)
d2

dr2
Bi(r)

)

+Bj(r)
(

−Z

r
+
l(l + 1)

2r2

)

Bi(r)

]

Si,j =
∫ rmax

0
dr Bj(r)Bi(r).

(3.52)

The first part of Hi,j can be further simplified using the derivative property of B splines,
〈Bj |B′′i 〉 = −〈B′j |B′i〉. The primes denote derivatives in this case. Since the product
of Bi(r) and Bj(r) are non-vanishing only when i and j differ by the B splines order
k or less, the matrices H and S are sparse and diagonally dominant banded matrices.
The solution to the eigenvalue problem of such matrices is numerically stable. Standard
fortran routines can be used to solve this eigenvalue problem numerically with nr − 2
eigenvalues and nr − 2 eigenvectors as the output results. Gaussian integration of order
2k allows the evaluation of the matrix elements of H and S to machine accuracy with
an exception of matrix elements of the Coulomb potential with 1/r dependence which
are solved to a reasonable accuracy. The resulting eigen vectors are orthonormalised for
every l symmetry.

The quality of the generated eigenvalues and the eigenvectors, and the numerical
stability, depend on several tunable parameters used in the B spline basis set. Vanne
[14] performed a systematic study of these tunable parameters and found that the quality
and numerical stability scales with the box size rmax, the order of the B splines k, the
number of the B splines s, the breakpoint sequence used, and the density of the B
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splines, s/rmax. The ground state and some lowly lying excited states can be accurately
reproduced even with a smaller box radius but this accuracy is reduced for highly excited
and continuum states because of the induced box confinement and the incompleteness of
the basis set. The box induced inaccuracies can be reduced by increasing the box radius
rmax, using B splines of order 7 − 10, employing a geometrically progressive break point
sequence for accurate description of both bound and continuum states, and increasing
the density of states s/rmax > 1 for a reliable treatment of photoionization processes.

3.2 Gauge Invariance and Gauge Transformation

An interesting feature in the description of the electromagnetic field is the fact that the
field strengths are derivable from the potentials but to a certain extent, the potentials
can be chosen freely without changing the field strengths [111].

This means that the vector potential (A(r, t)) and the scalar potential (φ(r, t)) can in
principle be expressed in any other gauge provided the following gauge-transformation
conditions are satisfied,

A′(r, t) = A(r, t) − ∇χ(r, t) (3.53)

φ′(r, t) = φ(r, t) +
∂

∂t
χ(r, t) (3.54)

and the wave function is correspondingly transformed to

Ψ′(r, t) = TRΨ(r, t) = e
i
~c

χ(r,t)Ψ(r, t) (3.55)

where TR is the transformation and χ(r, t) is the gauge function which is usually an
arbitrary function of r and t.

3.2.1 Generalised Gauge TDSE

If an N-electron system is exposed to intense laser pulse, the TDSE is formulated in the
X-gauge [14] by

{

i
∂

∂t
−HX(t)

}

| ΨX(t)〉 = 0 (3.56)

where the total Hamiltonian HX is a partition of a field-free part H0 and a system-field
interaction part VX given by

HX = H0 + VX (3.57)

The field-free Hamiltonian H0 is system dependent and it is given for an N-electron
system, assuming an infinitely massive nuclei, by

H0 = − 1

2

N
∑

j

∇2
j −

N
∑

j<k

{

1

rj
− 1

rjk

}

(3.58)
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The first term on the right of this equation is the electronic kinetic energy operator of
the jth electron and the other terms are the electronic potential energy operators due to
the electron-nucleus interaction and the electron-electron interaction respectively

The field-system interaction in the X gauge VX is given by

VX =
∑

j

AX(rj , t) · pX(j) − φX(rj , t) +
A2

X(t)

2
(3.59)

where the magnetic vector potential AX(r, t) and the electric scalar potential ΦX(r, t)
are generally gauge dependent and can be expressed as

AX(t) = A(rj , t) − ∇χ(rj , t)

ΦX(rj , t) = [F(rj , t) + χ̇(r, t)] · rj + Nχ̇0(t)
(3.60)

Within the single active electron (SAE) approximation, equation (3.56) is solved by
expanding the time dependent vector | ΨX(r, t)〉 in the basis vectors | Φα(r, t)〉, that is,

| ΨX(r, t) 〉 =
∑

α

Cα(t) | Φα(r, t) 〉 (3.61)

where | Φα(r, t)〉 are the solutions of TDSE with the field-free Hamiltonian H0.

Multiplication of equation (3.56) with 〈 Φα′(r, t) | for all α′ and integration over the
electronic co-ordinates yields a system of ordinary differential equations

〈 Φα′(r, t) | i ∂
∂t

−HX | ΨX(r, t) 〉 = 0
∑

α

〈 Φα(t) | i Ċα(t) | Φα(r, t) 〉

−
∑

α

Cα(t) 〈 Φα′(r, t) | H0 + VX(r, t) | Φα(r, t) 〉 = 0

(3.62)

The above integro-differential equation can be re-written as

i
∑

α

Ċα(t) 〈 Φα′(r, t) | Φα(r, t) 〉 = ΣαCα(t) 〈 Φα′(r, t) | VX(r, t) | Φα(r, t) 〉. (3.63)

If a discretization of the continuum is used, the vectors Φα can be renormalized to
fulfil the orthonormality condition, 〈 Φα′ | Φα 〉 = δα′ α, further simplifying the above
equation to

i Ċα′(t) = ΣαCα(t) 〈 Φα′(r, t) | VX(r, t) | Φα(r, t) 〉. (3.64)

From this general gauge treatment of the TDSE, the usual length(L) and velocity(V)
forms of the Lorenz gauge are obtainable by choosing appropriately the arbitrary function
χ(r, t) and the new Hamiltonian HX under the gauge transform becomes

HX = e
−ieχ
~c [HR] e

ieχ
~c (3.65)
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3.3 Strong Field Theories

with HR being the Hamiltonian operator in radiation gauge. Under these transforma-
tions, the interaction Hamiltonians HI in the usual length and velocity gauge dipole
approximations respectively become

H l
I = −er · E(t) (3.66)

and

Hv
I =

ie~

µc
A · ∇ +

e2

2µc2
A2(t) (3.67)

where E(t) is the electric field component of the electromagnetic radiation and A(t) is
the vector potential describing the electromagnetic radiation. These two quantities are
related by

E(t) = −1

c

∂A(t)

∂t
(3.68)

From this point on, only atomic units are used unless it is explicitly specified otherwise.
The radiation-gauge whose boundary conditions require the scalar potential φ(r) and
the divergence of the vector potential A to vanish is the preferred gauge. With the
boundary conditions, the vector potential satisfies the general wave equation and hence
it can be expressed in terms of plane waves

A(t) = A0 f(t) ε̂ exp[i(ωt− k · r + δ)] + c.c. (3.69)

with c.c. denoting complex conjugation. In this equation, A0 = E0/ω is the magnitude of
the vector potential expressed in terms of the peak electric field strength E0 divided by
the field frequency ω, f(t) is the carrier envelope pulse envelope, and k is the radiation
momentum whose magnitude k = 2π/λ. The modifications introduced by the spatial
retardation terms e±ik·r in equation (3.69) are investigated in this study.

3.3 Strong Field Theories

In this section, a brief overview of some of the theoretical approaches used in the solution
of the TDSE is discussed. The numerical TDSE solution used to incorporate the beyond-
the-dipole effects is also introduced here and subsequently discussed in detail in the
sections that follow.

3.3.1 Landau-Lifshitz Theory

Landau and Lifshitz [112] solved the Schrödinger equation for a hydrogen atom in a
quasi-static field using parabolic co-ordinates. In these co-ordinates, the symmetry of
the effective potential as well as the degeneracy of the eigenstates of the system are
removed. They derived the tunnel ionization rate as

ΓLL = 4
(2 | ε0 |)5/2

F
exp

(

−2(2 | ε0 |)3/2

3F

)

(3.70)
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3 Non-relativistic Solutions of the TDSE

where ε0 is the ionization potential of the hydrogen atom in its ground state and F is
the quasi-static field strength. The rate can be generalized to other hydrogenic systems
using ε0 = −Z2/2.

3.3.2 KFR/SFA Theories

Keldysh-Faisal-Reiss (KFR), also known as strong-field approximation (SFA), theories
are very similar in nature although developed at different times. Keldysh in his seminal
paper [34] on strong-field ionization pioneered the work by providing a unified picture
of the ionization process for multiphoton and tunneling regimes. With the discovery of
the above-threshold-ionization (ATI) [32], Faisal [36] and Reiss [37] formulated a theory
closely related to Keldysh but in the velocity gauge.

The KFR/SFA ionization probability amplitude is given by

ap(t) = −i
∫ t

dt′ e−iS(t,t′,p) 〈φV (p + A(t′))|V (t′)|φi〉 (3.71)

where φi is the initial bound state, φV is a Volkov (dressed) state of a free-electron
in a radiation field, V (t′) is the interaction Hamiltonian at the time of birth of the
free-electron, and the action integral S(t, t′,p) is defined as

S(t, t′,p) =
1

2

∫ t

t′
dτ [p + A(τ)]2 + Ip(τ − t′). (3.72)

In general, the KFR theories ignore the effect of the laser fields in the initial state. The
effect of resonant transitions is also not included in these theories.

3.3.3 PPT Theory

The work of Keldysh [34] was closely followed by a detailed analytical solution of the
TDSE derived by Peremolov, Popov, and Terent’ev (PPT) [66]. They calculated the
total rate of multiphoton ionization from a state in a laser field for linear polarization
to be

ΓPPT = |Cn∗l∗ |2
√

6

π
flmEi

(

2(2Ei)
3
2

F

)2n∗−|m|− 3
2

× (1 + γ)2|m
2
|+ 3

4 Am(ω, γ) exp

(

−2(2Ei)
3
2

F
g(γ)

)

(3.73)
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3.3 Strong Field Theories

where:

n∗ =
Z√
2Ei

γ =
ω(

√
2Ei)

F
l∗ = n∗ − 1

flm =
(2l + 1)(l + |m|)!
2|m||m|!(l − |m|)!

g(γ) =
3

2γ

[

1 +
1

2γ2
sinh−1(γ) −

√

1 + γ2

2γ

]

Am(ω, γ) =
4

3π

1

|m|!
γ2

1 + γ2

∞
∑

n−ν

ωm ×
√

2γ

1 + γ2
(n− ν)e−(n−ν)α(γ)

ωm(x) = e−x2
∫ x

0
(x2 − y2)mey2

dy

α(γ) = 2(sinh−1(γ) − γ
√

1 + γ2
)

ν =
Ei

ω
(1 +

1

2γ2
)

(3.74)

and Ei is bound state energy corresponding to the ith state, Z is the charge state, γ is
the Keldysh parameter, and n, l and m are the quantum numbers specifying the state
of the system.

3.3.4 ADK Theory

Ammosov, Delone, and Krainov (ADK) [69] imposed a limiting condition γ → 0 on the
PPT formula to obtain a more popular relation that is valid only in the quasi-static
tunneling (QST) limit. With this limit, the total rate of multiphoton ionization reduces
to

ΓADK = |Cn∗l∗ |2
√

6

π
flmEi

(

2(2Ei)
3
2

F

)2n∗−|m|− 3
2

× exp

[

−2(2Ei)
3
2

F

]

(3.75)

with the terms as defined in equation (3.74).

3.3.5 Lowest-order Perturbation Theory (LOPT)

In perturbation theory, the evolution operator in the TDSE can be expanded in the
Dyson series [113] as

UI(t) = 1 − i

~

∫ t

0
dt′ VI(t′) +

(−i
~

)2 ∫ t

0
dt′
∫ t′

0
dt′′ VI(t′)VI(t′′) + 0(V 3). (3.76)
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3 Non-relativistic Solutions of the TDSE

The lowest-order term (LOPT) in the expansion of the transition amplitude for α 6= α′

is

− i

~

∫ t

0
dt′ 〈α′ | VI(t′) | α〉

= − i

~

∫ t

0
dt′ 〈α′e

iH0t′

~ | VI(t′) | e
iH0t′

~ α〉

= − i

~

∫ t

0
dt′ e

−i(Eα−Eα′ )t′

~ 〈α′ | VI(t′) | α〉

=
[exp −i(Eα−Eα′ )t

~
− 1]

Eα − Eα′
Vαα′ .

(3.77)

The transition probability is then defined as

P (α → α′) =
[4 sin2 ∆Et

2~ ]

(∆E)2
|Vαα′ |2 (3.78)

where ∆E = Eα − Eα′ and the LOPT transition rate is

Γ(α → α′) = lim
t→+∞

[4 sin2 ∆Et
2~ ]

t(∆E)2
|Vαα′ |2 (3.79)

where α = {n, l,m} represents a set of quantum numbers defining an eigenstate of a
system.

3.3.6 Numerical TDSE

The above methods are quite useful in providing a clear and intuitive picture of the
interaction processes. But when an accurate quantitative description is desirable, then
one has to directly solve the TDSE numerically. In the perturbative regime, the in-
terpretation of the numerical TDSE results is rather easy but beyond the limits of the
lowest-order perturbation theory (LOPT), the interpretation of the results is quite a
challenging task. The accuracy of the numerical TDSE results is limited by the order of
the multipole expansion used in transition matrices. In most cases, the dipole approx-
imation has been employed to describe the interaction processes. This approximation
may not be valid if very short wavelengths are used and/or if the peak electric field
strength of the radiation field is very large. In this study, the validity of the dipole
approximation in the strong-field processes is tested and the effects of the non-dipole
interactions in the photoionization dynamics are discussed.

Different approaches for solving the TDSE exist even within the single-active-electron
(SAE) approximation. The solution of the non-relativistic TDSE using a spectral method
employing B splines used in this study is restricted to the SAE approximation. The
discussion is centred on the hydrogen atom but with some extension to the helium
atom.

34



3.4 The TDSE in Radiation and Length Gauge

3.4 The TDSE in Radiation and Length Gauge

The total Hamiltonian for a quantum system can be written as a sum of the field-free
Hamiltonian H0 and an interaction Hamiltonian HI . The field-free Hamiltonian for a
system with several electrons can be written as

H0 =
N
∑

j,k

1

2µ
p2

j + V (rj , rk) (3.80)

where the first term in the summation gives the kinetic energy and the second term gives
the potential energy of the jth electron respectively. The potential energy term can be
fully expressed as

V (rj , rk) = − Z

rj
+

1

rjk
. (3.81)

Here, the first term of the equation is the attractive Coulomb interaction between the
jth electron and the nucleus whose atomic number is Z while the second term is the
repulsive Coulomb interaction between any pair of the interacting electrons. By con-
sidering the motion of a single active electron and freezing the other electrons in their
respective ground-state configurations, the field-free Hamiltonian can be approximated
by a SAE model with a central potential Veff(r) obtained by using mean-field approaches
to minimize the electron-electron interaction terms.

A non-relativistic single-active-electron system interacting with a radiation field in
the non-depletion mode 2, can be described using the semi-classical time dependent
Schrödinger equation in the minimal coupling formalism [111]

−i ∂Ψ(r, t)

∂t
=

1

2m
[(p − q

c
A)2 − Φ(r, t) + V (r)]Ψ(r, t). (3.82)

In the SAE model, the interaction Hamiltonian HI would be similar to that of the
hydrogen atom and therefore it can be expressed in any of the different gauges provided
that the gauge invariance conditions are satisfied. For example, in Radiation gauge it
can take the form

HI = A · p +
A2

2
(3.83)

with the Coulomb gauge conditions specified as

∇ · A = 0; Φ = 0. (3.84)

In length gauge, the scalar function χ = A(r, t) · r is used in transforming both the
vector and scalar potentials, and the wave function from the radiation gauge.

From vector analysis, one can show easily that

∇χ(r, t) = A(r, t) + r∇ · A(r, t) + i(L × A) (3.85)

2The number of photons in the radiation field is assumed to be in excess and can not be depleted.
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3 Non-relativistic Solutions of the TDSE

yielding the corresponding vector and the scalar potentials in length gauge as

AL = A − ∇(A · r) = −iL × A;

ΦL = F · r.
(3.86)

3.4.1 Transformation to Length Gauge

The semi-classical Hamiltonian in a new gauge can be written in terms of the corre-
sponding vector A′ and scalar Φ′(r) potentials as

H =
1

2m
[p − qA′]2 + V (r) + Φ′(r)

=
1

2m
[p2 − qp · A′ − qA′ · p + q2A′2] + V (r) + Φ′(r)

= H0 +
1

2m
[−qp · A′ − qA′ · p + q2A′2] + Φ′(r)

(3.87)

where H0 is the field-free Hamiltonian. Considering the explicit form of the length-gauge
vector potential already shown in equation(3.86) and expanding it further, yields

AL = −iL × A

= −~ (r × ∇ × A)

= −~ (x̂z∂xAz + ŷz∂yAz − ẑ[x∂xAz + y∂yAz])

(3.88)

where the case of a linear polarized radiation field is considered with its electric field
component pointing in the +z direction. Making appropriate substitutions for this vector
potential in the equation for the semi-classical Hamiltonian above, the first interaction
Hamiltonian term can be re-written as,

−qp · AL

2m
=
i~2e

2m
∇ · (x̂z∂xAz + ŷz∂yAz − ẑ[x∂xAz + y∂yAz])

=
i~2e

2m
(z∂xxAz + z∂yyAz − x∂zxAz − y∂zyAz)

=
i~2e

2m
(z∂xxAz + z∂yyAz + z∂zzAz − z∂zzAz − x∂xzAz − y∂yzAz)

=
i~2e

2m
z∇2Az

= − i~2ω2e

2mc2
z Az

(3.89)

having made use of the Coulomb gauge condition ∇ · A = 0 and noting that the vector
potential A satisfies the Maxwell’s wave equation, that is,

∇2A =
1

c2

∂2

∂t2
A = −ω2

c2
A (3.90)
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3.4 The TDSE in Radiation and Length Gauge

Likewise, the second term of the interaction Hamiltonian is expressed as

−qAL · p

2m
=
i~2e

2m
(x̂z∂xAz + ŷz∂yAz − ẑ[x∂xAz + y∂yAz]) · ∇

=
i~2e

2m
(z∂xAz∂x + z∂yAz∂y − [x∂xAz + y∂yAz]∂z)

=
i~2e

2m
(∂xAz)(z∂x − x∂z)

=
~e

2m
(∂xAz)Ly

(3.91)

having explicitly considered the radiation propagation direction to be the +x direction.
The third interaction term can also be expressed as

q2A2
L

2m
=

~
2e2

2m
(x̂z∂xAz + ŷz∂yAz − ẑ[x∂xAz + y∂yAz])2

=
~

2e2

2m

{

(z∂xAz)2 + (z∂yAz)2 + [x∂xAz + y∂yAz]2
}

=
~

2e2

2m

{

(z∂xAz)2 + (x∂xAz)2
}

=
~

2e2

2m
(∂xAz)2[z2 + x2]

(3.92)

The last interaction term incorporated by the gauge transformation of the scalar poten-
tial is given by

ΦL = ∂t(A(r, t) · r) = (∂tA(r, t) · r)

= F(r, t) · r = −E(r, t) · r
(3.93)

The full length-gauge interaction Hamiltonian put together in the conventional Carte-
sian co-ordinates can be written as

H l
I = −Ez − i~2ω2e

2mc2
zAz +

~e

2m
(∂xAz)Ly +

~
2e2

2m
(∂xAz)2 [z2 + x2] (3.94)

The first term gives the dominant contribution to the interaction Hamiltonian, the second
is an intensity and wavelength dependent relativistic correction term, while the third
and the fourth are the explicit contributions of the paramagnetic and diamagnetic fields
respectively, with B = ∂xAz as the magnitude of the magnetic field strength. In the
weak-field and long-wavelength regimes, the magnetic and relativistic contributions can
be ignored without any significant effect on the reliability of the Hamiltonian. But
in the strong-field regime, the magnetic and the relativistic contributions may not be
negligible. It is evident that the relativistic correction provided by the second term in
equation (3.94) has the same selection rules as the first term which yields the leading
contribution. It can therefore provide additional corrections to the dipole spectrum in
the strong-field regime.
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3 Non-relativistic Solutions of the TDSE

3.4.2 Implicit-Energy Solution of the TDSE

The TDSE, with the Hamiltonian separated into two parts, can be expressed as

i~
∂

∂t
Ψ(r, t) = [H0 +HI ] Ψ (3.95)

where Ψ is the total wavefunction of the system, H0 is the field-free Hamiltonian, and HI

is the interaction Hamiltonian in any gauge provided the gauge conditions are fulfilled.

The total wavefunction is expanded as a linear combination of field-free states Φα(r)
as

Ψr,t =
∑

α

Cα(t)φα(r) (3.96)

In this case, the time dependence of the field-free wavefunctions is implicitly included in
the expansion coefficients Cα(t). Substituting this expansion in the TDSE and taking
the inner product using φα′ , one obtains

∑

α

〈φα′ | i~ ∂
∂t
Cα(t)φ(r) 〉 =

∑

α

[Cα(t)〈φα′ | H0 | φα 〉 + Cα(t)〈φα′ | HI | φα 〉]. (3.97)

If evaluated on both sides, this equation reduces to the following system of coupled
integro -differential equations

i~ Ċα′ = Cα′(t)Eα′ +
∑

α

Cα(t) 〈φα′ | HI | φα 〉 (3.98)

This system of equations yields temporally and spatially coupled integral equations which
can be solved numerically in the radiation, length or velocity gauges by substituting a
suitable form of the interaction Hamiltonian HI together with the corresponding gauge
transformed wavefunctions. That is,

Ċα′(t) = − i

~
[Cα′(t)Eα′ +

∑

α

Cα(t)〈φα′ | HI | φα 〉] (3.99)

In the radiation gauge, the above equations can be written as

Ċα′(t) = − i

~
[Cα′(t)Eα′ +

∑

α

Cα(t) 〈φα′ | A · p +
A2

2
| φα 〉] (3.100)

The corresponding equations for velocity gauge would be

Ċα′(t) = − i

~
[Cα′(t)Eα′ +

∑

α

Cα(t) 〈φα′ | A · p | φα〉] (3.101)

where the A2 term can only be gauged away within the dipole approximation using a
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3.4 The TDSE in Radiation and Length Gauge

phase transformation. As for the length gauge, one has

Ċα′(t) = − i

~
[Cα′(t)En′ +

∑

α

Cα(t) 〈φα′ | H l
I | φ(l)

α 〉] (3.102)

where H l
I is defined in equation (3.94) and φ

(l)
α is the length-gauge basis set.

3.4.3 Explicit-Energy Solution of the TDSE

As an alternative, the time dependence of the wavefunction can be defined by including
an explicit energy phase as

Ψr,t =
∑

α

Cα(t)φα(r) e−
i
~

Eαt. (3.103)

With this time-dependent phase of the wave function in the TDSE, one obtains the
coupled integro-differntial equations

Ċα′(t) = − i

~

∑

α

Cα(t)〈φα′ | H l(v)
I | Φα 〉 e i

~
[E′

α−Eα]t. (3.104)

This set of equations can also be solved using a method similar to the implicit case given
by equation (3.99) above. In the following discussions, the explicit form of the coupled
equations is employed only for the sake of convenience. The extension to the implicit
case is rather similar as long as the contribution of the energy phase in the coupled
equations is taken into consideration.

3.4.4 Radiation-Gauge Integro-Differential Equations

The vector potential A in the radiation gauge satisfies the Maxwell’s wave equation
whose solution is a plane-wave which is a linear combination of two terms, one corre-
sponding to photon absorption and the other to emission of photons with frequency ω
by the target system. The vector potential can be written as

A(r, t) = A0 f(t) ε̂ sin[(ωt− k · r + δ)]. (3.105)

As already defined in equation (3.69) above, A0 is the amplitude of the potential, f(t) is a
time-dependent function which describes the pulse shape of the radiation field, ε̂ is a unit
vector specifying the direction of the vector potential and it usually corresponds to the
direction of the electric field of the radiation. Vectors k and r are the photon momentum
and radial electron co-ordinate vectors that define the direction of propagation of the
radiation and the orientation of the electron with respect to the centre of mass (nucleus
in case of atomic target) respectively. The δ is the carrier envelope phase (CEP) shift of
the vector potential envelope relative to the carrier.

The explicit case of the system of integro-differential equations (3.104) above in the
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3 Non-relativistic Solutions of the TDSE

radiation gauge, with the purely temporal part included, can therefore be written as

Ċα′(t) = − i

~

∑

α

C̃α(t) { 〈φα′ | [ζ1(t) cos(k · r) + ζ ′1(t) sin(k · r)] ε̂ · pc | φα 〉

+ 〈φα′ | [ζ3(t) + ζ2(t) cos(2k · r) + ζ ′2(t) sin(2k · r)] | φα 〉 }
(3.106)

with the time-dependent functions in the interaction Hamiltonian taking the values

ζ1(t) = A0f(t) sin(ωt+ δ)

ζ ′1(t) = −A0f(t) cos(ωt+ δ)

ζ2(t) = −A2
0f

2(t)[cos(2ωt+ 2δ)]

4

ζ ′2(t) = −A2
0f

2(t)[sin(2ωt+ 2δ)]

4

ζ3(t) =
A2

0f
2(t)

4

(3.107)

and

C̃α(t) = C̃α e
i
~

[Eα′−Eα] t (3.108)

3.4.5 Length-Gauge Integro-Differential Equations

In length-gauge, the system of integro-differential equations can be written as

Ċα′(t) = − i

~

∑

α

{ −C̃α(t) 〈φα′ | [ζ1(t) sin(k · r) − ζ ′1(t) cos(k · r)]γ′L | φα 〉

+ Cα(t) × 〈φα′ | [ζ3(t) − 1

2
ζ2(t) cos(k · r) − 1

2
ζ ′2(t) sin(k · r)]γ′′L | φα 〉 }

(3.109)

where use has been made of the definitions of the prefactors already outlined in equation
(3.107) of the radiation gauge. Also used is the relationship between the momentum
vector and angular frequency, that is, |k| = ω/c where c is the speed of light. φα is
the eigen vector in length-gauge describing the system during the interaction with the
radiation field. The coefficients γ′L and γ′′L as used in the integro-differential equation

γ′L = − [ωz +
ik2

2
z +

k

2
Ly]

γ′′L =
k2

2
[z2 + x2]

(3.110)

are defined in relation to the corresponding terms in the length-gauge interaction Hamil-
tonian in equation (3.94). The above integral equations can be separated into parts with
one part being spatial and the other being temporal and each can be integrated inde-
pendently of the other. The evaluation of the space dependent part yields the time
independent transition matrix elements Mba that are governed by certain selection crite-
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3.5 Time-Independent Transition Matrix Elements

ria stipulated by the symmetry rules of angular momentum. The values of the coefficients
Cα′(τ) at the end of the pulse duration τ for any of the gauges can therefore be obtained
by performing the above integrations numerically using any reliable time integration
routine. The velocity-gauge integro-differential equation incorporating the non-dipole
terms takes a similar form to that of radiation gauge and therefore it is not considered
here.

3.5 Time-Independent Transition Matrix Elements

The time-dependent transition matrix element between the initial state and the final
state of an N−electron system can be given in more general terms by

Tα′−α = − i

~

N
∑

j=1

Cα(t) ζ̃(t) 〈ψα′(rj , t) | H̃j
I | ψα(rj , t) 〉 (3.111)

where H̃j
I is the spatial part of the interaction Hamiltonian of the jth-electron with

the radiation field, often referred to as the transition-matrix operator, ζ̃(t) is the time-
dependent part of the interaction operator, and is a Cα(t) is a time-dependent weighting
function whose square yields the probability of occupation of the specific quantum state
(α) if the total wavefunction is normalized. The wavefunction ψα are single-electron
orbitals which form part of a many-electron total wavefunction Ψα′ . For physical prob-
lems involving light-matter interactions, the length- or velocity-gauge transition matrix
operators are commonly used. The total wavefunction can be expanded in the form of
Slater-type determinants

Ψα′ =
1√
N

[1 −
N−1
∑

1

P̂jk]ψ(r1)ψ(r2) · · ·ψ(rN ). (3.112)

The parity operator P̂jk interchanges the positions of the jth and kth electrons and
ensures the total anti-symmetrization of the wavefunction in consistence with the Pauli-
exclusion principle.

Within the single-active-electron (SAE) approximation, a many-electron system can
be reduced to a single-electron problem by using some mean-field approximations. The
multielectron effects are embedded in a model potential derived from such mean-field ap-
proximations. In this study, a one-electron system is explicitly considered. An extension
to the many-electron problem is possible using the SAE approximation. The two distinct
states, ψa and ψb corresponding to the initial and the final states of the one-electron
system respectively, are used in the evaluation of the time-independent transition matrix
elements. If the wavefunctions of these distinct orbitals are substituted in the transition
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3 Non-relativistic Solutions of the TDSE

matrix equation, one obtains

Tba =
i

~
Ca(t) ζ̃(t) 〈ψb | H̃j

I | ψa〉

Tba =
i

~
Ca(t) ζ̃(t) Mba

(3.113)

where the time-independent transition matrix element Mba between the two states is

Mba = 〈ψb | H̃j
I | ψa〉. (3.114)

Depending on the type of interaction and the gauge used, the time-independent transition
matrix elements can be symmetric or anti-symmetric upon inversion. For example, the
dipole length-gauge interaction matrix elements are symmetric (Mba = Mab) whereas
the velocity-gauge transition matrix elements within the same dipole interactions are
anti-symmetric, that is, (Mba = −Mab).

3.5.1 Radiation-Gauge Matrix Elements

The transition matrix for radiation gauge within the SAE approximation can be sepa-
rated into two parts with part one being

1Tα′←α = − i

~
Cα(t) ζ1(t)〈ψα′ | cos(k · r) ε̂ · pc | ψα 〉

− i

~
Cα(t) ζ ′1(t)〈ψα′ | sin(k · r) ε̂ · pc | ψα 〉

(3.115)

and the other part is expressed as

2Tα′←α = − i

~
Cα(t) ζ2(t)〈ψα′ | cos(2k · r) | ψα 〉

− i

~
Cα(t) ζ ′2(t)〈ψα′ | sin(2k · r) | ψα 〉

(3.116)

where the trigonometric functions cos(k · r), sin(k · r), and the corresponding quadratic
terms can be approximated using the even and the odd terms of the plane wave expansion
series respectively. In the Rayleigh multipole expansion of the plane wave eik·r,

eik·r =
∞
∑

l,m

4π il jl(kr)Y
m∗

l (k̂)Y m
l (r̂), (3.117)

jl(kr) are the spherical Bessel functions and Y m
l are the spherical harmonics [19]. An

equivalent formulation in the Taylor expansion series is expressed later for the sake of
comparison.

The transition matrices, Mba between the two states, α = a and α = b, for the
first part, 1Tb←a with the direction of radiation propagation explicitly considered, are
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3.5 Time-Independent Transition Matrix Elements

expanded in spherical harmonics as

Mba =
∞
∑

l,m

4π il
′ 〈ψb | il jl(kr)Y m∗

l (k̂)Y m
l (r̂) ε̂ · −i∇ | ψa 〉 (3.118)

or simply,

Mba =
∞
∑

l=0

+l
∑

m=−l

M
(l,m)
ba (3.119)

where l′ = l for even multipole orders and l′ = l − 1 for the odd multipole orders. The
first term of the series obeys the cylindrical symmetry selection rules similar to the
dipole approximation matrix elements although it contains higher order corrections.
The additional higher multipole-order terms, in the frame of Taylor expansion series,
may be seen as corrections to the dipole approximation within the lowest-order Rayleigh
expansion. The correspondence between the orders of the Rayleigh and Taylor multipole
expansion series is therefore not exact and would yield some discrepancy in results. By
considering the explicit propagation direction of the radiation field, the matrix elements
above can be reduced to the form

M
(l,m)
ba = 4π il

′
Y m∗

l (k̂)
∑

λ

〈ψb | jl(kr)Y m
l (r̂) ε̂λ ∇λ | ψa 〉. (3.120)

In evaluating the derivative ∇λψ, the implementation discussed in Bethe and Salpeter
(A.37-39) [18] for an electron in 3D space is employed. That is,

{

∂

∂z

}

{ f(r)Ylm(r̂) } =

√

(l +m+ 1)(l −m+ 1)

(2l + 3)(2l + 1)
Yl+1,m

{

∂f

∂r
− l

f

r

}

+

√

(l +m)(l −m)

(2l + 1)(2l − 1)
Yl−1,m

{

∂f

∂r
+ (l + 1)

f

r

}

(3.121)

{

∂

∂x
+ i

∂

∂y

}

{ f(r)Ylm(r̂) } =

√

(l +m+ 2)(l +m+ 1)

(2l + 3)(2l + 1)
Yl+1,m+1

{

∂f

∂r
− l

f

r

}

−
√

(l −m)(l −m− 1)

(2l + 1)(2l − 1)
Yl−1,m+1

{

∂f

∂r
+ (l + 1)

f

r

}

(3.122)

{

∂

∂x
− i

∂

∂y

}

{ f(r)Ylm(r̂) } = −
√

(l −m+ 2)(l −m+ 1)

(2l + 3)(2l + 1)
Yl+1,m−1

{

∂f

∂r
− l

f

r

}

+

√

(l +m)(l +m− 1)

(2l + 1)(2l − 1)
Yl−1,m−1

{

∂f

∂r
+ (l + 1)

f

r

}

(3.123)

Equation (3.120) can then be separated into radial and angular parts and solved nu-
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3 Non-relativistic Solutions of the TDSE

merically. Usually, one would fix the polarization directions of the electric field vector
to be either linear or circular to reduce the complexity of the interactions. Fixing the
polarization direction also makes physical sense in that in many cases, the interest is on
systems interacting with polarized fields from lasers or other sources. In this study, the
radiation is considered to be propagating in the +x direction with its vector potential
directed along the +z direction and the magnetic-field vector in the +y direction. Equa-
tions (3.121)-(3.123) give the dependence of transition matrix elements on the angular
quantum numbers as well as radial co-ordinates. With these considerations, the matrix
element can be fully expanded as

∑

λ

〈ψb | jl(kr)Y 0
l (r̂) ε̂λ ∇λ | ψa 〉 =

[

(la +ma + 1)(la −ma + 1)

(2la + 3)(2la + 1)

]

1
2
∫

dΩY
m∗

b
lb

(r̂)Y m
l (r̂)Y ma

la+1(r̂)

×
∫

dr Rb(r) jl(kr)
[

∂Ra(rj)

∂r
− la

Ra(r)

r

]

+
[

(la +ma)(la −ma)

(2la + 1)(2la − 1)

]

1
2
∫

dΩY
m∗

b
lb

(r̂)Y m
l (r̂)Y ma

la−1(r̂)

×
∫

dr Rb(r) jl(kr)
[

∂Ra(r)

∂r
+ (la + 1)

Ra(r)

r

]

(3.124)

The angular integrals can be simplified further using the angular momentum algebra.
In terms of Clebsch-Gordan coefficients, the angular integrals yield

∫

dΩY
m∗

b
lb

(r̂)Y m
l (r̂)Y ma

la+1(r̂) =(−1)ma+1
[

(2lb + 1)(2l + 1)

4π(2la + 3)

]

1
2

× 〈lb l 0 0 | la + 1 0〉 〈lb l mbm | la + 1ma〉
∫

dΩY
m∗

b
lb

(r̂)Y m
l (r̂)Y ma

la−1(r̂) =(−1)ma−1
[

(2lb + 1)(2l + 1)

4π(2la + 3)

]

1
2

× 〈lb l 0 0 | la − 1 0〉 〈lb l mbm | la − 1ma〉.

(3.125)

The transition matrix elements of the second part, 2Tb←a are also evaluated by expand-
ing the term, e2i(k·r), in spherical harmonics and considering that the photon propagates
in the x direction. This yields

M
(l,m)
ba = 4π il

′
Y m∗

l (k̂) 〈ψb | jl(2kr)Y m
l (r) | ψa 〉. (3.126)

If the radial and angular parts are separated, the equation reduces to the form

M
(l,m)
ba = 4π il

′
Y m∗

l (k̂)
∫

dr Rb(r)Ra(r) jl(2kr)
∫

dΩY
m∗

b
lb

(r)Y m
l (r̂)Y ma

la
(r̂). (3.127)

which can be numerically evaluated. The angular integral for these matrix elements
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evaluate to

∫

dΩYb(r)Y m
l (r̂)Ya(r̂) =

√

[

(2lb + 1)(2l + 1)

4π(2la + 1)

]

〈lb l 0 0 | la 0〉 〈lb l mbm | lama〉.

(3.128)

3.5.2 Length-Gauge Matrix Elements

The length-gauge transition matrix elements Tα′←α can be separated into two parts with
the first part expressed as

1Tα′←α = Cα(t) 〈ψα′ | [ζ1(t) sin(k · r) − ζ ′1(t) cos(k · r)]γ′L | ψα 〉 (3.129)

2Tα′←α = Cα(t)〈ψα′ | [ζ3(t) − 1

2
ζ2(t) cos(k · r) − 1

2
ζ ′2(t) sin(k · r)]γ′′L | ψα 〉 (3.130)

where terms ζi for i = {1, 2, 3} are defined in equation (3.109) and the terms γ′L and
γ′′L are defined in equation (3.110). The two-parts of the length-gauge transition matrix
elements have different selection rules. That means they correspond to different final
states if the initial state is the same. One should also note the difference in the time-
dependent functions used for the different parts of each transition matrix elements.

The transition matrix elements Mba from state a to state b for the first part,1Tb←a

corresponds to

Mba = 4π
∞
∑

l=0

l
∑

m=−l

〈ψb | il′ jl(kr)Y m∗

l (k̂)Y m
l (r̂) ε̂ · r | ψa 〉 (3.131)

where the Rayleigh multipole expansion has been used and only the terms ∝ z and ∝ z2

in equations (3.109) and (3.110) are considered for clarity purposes. The primed term
is defined as l′ = l for even multipole orders and l′ = l − 1 for odd multipole orders.
This matrix element can further be written as a summation of symmetry resolved matrix
elements with of the orbital angular momentum quantum number l and the projection
quantum number m

Mba =
∞
∑

l=O

+l
∑

m=−l

M
(l,m)
ba (3.132)

of the radiation field. The first term l = 0 yields the lowest multipole order approx-
imation and the higher l values as the non-dipole corrections beyond the lowest order
approximation. We expand the transition matrix elements

M
(l,m)
ba = 4π il

′ 〈ψb | jl(kr)Y m∗

l (k̂)Y m
l (r̂) ε · r | ψa 〉 (3.133)

with the consideration that the radiation field propagates in the x direction. By explicitly
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considering the direction of k is known in the function Y m∗
l (k̂), the matrix elements

M
(l,m)
ba = (4π) il

′
Y m∗

l (k̂) 〈ψb | jl(kr)Y m
l (r̂) ε̂ · r | ψa 〉. (3.134)

can be evaluated. The vectors ε̂ and r can be expressed in terms of their spherical
components εq and rq where q = 1, 0,−1. In terms of cartesian coordinates, the spherical
components can be expressed as

ε̂1 = − 1√
2

(ε̂x + iε̂y)

ε̂0 = ε̂z

ε̂−1 =
1√
2

(ε̂x − iε̂y)

(3.135)

and

r1 = − 1√
2

(x+ iy) = r(
4π

3
)

1
2 Y 1

1 (r̂)

r0 = z = r(
4π

3
)

1
2 Y 0

1 (r̂)

r−1 =
1√
2

(x− iy) = r(
4π

3
)

1
2 Y −1

1 (r̂)

(3.136)

The scalar product ε̂ · r can then be evaluated in terms the spherical components as

ε̂ · r =
1
∑

q=−1

ε̂q rq. (3.137)

Substituting this product into the matrix-elements expansion yields

M
(l,m)
ba = (4π) il

′ ∑

q

Y m∗

l (k̂) 〈ψb | jl(kr) r Y m
l (r̂)Y q

1 (r̂) | ψa 〉. (3.138)

Making use of angular-momentum vector addition algebra,

Y m1
l1

(r̂1)Y m2
l2

(r̂2) =
l1+l2
∑

L=|l1−l2|

+L
∑

M=−L

√

(2l1 + 1)(2l2 + 1)

4π(2L+ 1)

× 〈 l1 l2 0 0 | L 0 〉 〈 l1 l2m1m2 | LM 〉Y M∗

L (r̂)

(3.139)

leads to a further simplification of the form

M
(l,m)
ba =

∑

q,L,M

(4π) il
′
Y m∗

l (k̂)

√

[

2l + 1

2L+ 1

]

〈 l 1 0 0 | L 0 〉

× 〈 l 1mq | LM 〉 〈ψb | jl(kr) r Y m
l (r̂) | ψa 〉.

(3.140)
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Separating the radial and the angular parts, one obtains the matrix elements

M
(l,m)
ba = (4π) il

′
Y m∗

l (k̂)
∑

q,L,M

√

[

2l + 1

2L+ 1

]

〈 l 1 0 0 | L 0 〉 〈 l 1mq | LM 〉

×
∫

dr r3Rb jl(kr)R
m
a

∫

dΩY
m∗

b
lb

(r̂)Y m
l (r̂)Y ma

la
(r̂)

(3.141)

which can be evaluated for any given radiation polarization q. The angular integral
when evaluated using the orthonormality conditions of spherical harmonics reduces to

∫

dΩY
m∗

b
lb

(r̂)Y m
l (r̂)Y ma

la
(r̂)

= (−1)ma

[

(2lb + 1)(2L+ 1)

4π(2la + 1)

]

1
2

〈lb L 0 0 | la 0 〉〈lb LmbM | lama 〉
(3.142)

The second part of the length-gauge transition matrix,2Tα′←α, can also be evaluated
following a similar procedure as the first part.

3.6 Selection Rules

The transition-matrix elements can be expressed as a product of radial and angular
integrals as already shown. The radial integrals are always in principle non-zero while the
angular integrals can only be non-zero for certain combinations of (lb,mb) and (la,ma)
owing to the orthonormality conditions of the spherical harmonics. The non-zero angular
integrals obey certain selection rules derived from the algebra of angular momentum. In
the case of optical transitions, any particular selection rule depends on the nature of
the interaction Hamiltonian, the l and m values of the spherically expanded spatial
phase retardation term eik·r, and the direction of propagation of the radiation. In this
section, the selection rules suitable for describing the multipole transitions are discussed
but specifically for cases where the vector potential of the radiation is linearly polarized
along the +z direction while its propagation is along the +x direction.

From the expressions of the transition-matrix elements considered in this study, it can
be seen that generally the angular integrals take any of the following three forms

∫

dΩ Y m1
l1

(r̂)Y m2
l2

(r̂) (3.143)
∫

dΩ Y m1
l1

(r̂)Lλ Y
m2

l2
(r̂) (3.144)

∫

dΩ Y m1
l1

(r̂)Y mλ
λ (r̂)Y m2

l2
(r̂) (3.145)

where Lλ can be Lz or any of the ladder operators L+ = Lx + iLy or L− = Lx − iLy,
and Y mλ

λ is a spherical harmonics function with orbital angular momentum quantum
number λ and its projection quantum number mλ.

The integral in equation (3.143) vanishes unless l1 = l2 and m1 = m2. Similarly, the
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3 Non-relativistic Solutions of the TDSE

ladder operator L+(L−) raises (lowers) the projection quantum number m of a state
subject to the condition |m± 1| ≤ l while Lz preserves the projection quantum number
of the state. In terms of eigenvalue equations, the operations yield

LzY
m

l (r̂) = m~Y m
l (r̂)

L+Y
m

l (r̂) = ~

√

(l −m)(l +m+ 1)Y m+1
l (r̂)

L−Y
m

l (r̂) = ~

√

(l +m)(l −m+ 1)Y m−1
l (r̂)

(3.146)

with the corresponding eigenvalues. This imposes the conditions l1 = l2 on orbital an-
gular momentum quantum numbers and m1 = m2, m1 = m2 + 1, or m1 = m2 − 1 on
projection angular momentum quantum numbers corresponding to Lz, L+, or L− re-
spectively. Otherwise, the integral of the form of equation (3.144) would vanish.

The integral I(l1,m1;λ,mλ; l2,m2) in equation (3.145) can be expressed in terms of
the Clebsch-Gordan coefficients as

I(l1,m1;λ,mλ; l2,m2) = (−1)m2 [
(2l1 + 1)(2λ+ 1)

4π(2l2 + 1)
]

1
2 〈l1 λ 0 0 | l2 0 〉 〈l1 λm1mλ | l2m2 〉

(3.147)
From the properties of the Clebsch-Gordan coefficients, the above integral vanishes unless
the following two conditions

l2 = l1 ± λ

m2 = m1 +mλ

(3.148)

are satisfied. These relations correspond to the orbital angular momentum and the
projection quantum number selection rules respectively. The parity requirement that
the integrand should be an even function for the integral to be non-vanishing under a
co-ordinate transformation r = −r corresponding to

Rnl(r)Y
m

l (θ, φ) = Rnl(r)Y
m

l (π − θ, φ+ π)

Rnl(r)Y
m

l (θ, φ) = Rnl(r)(−1)l Y m
l (θ, φ)

(3.149)

introduces a further condition that the sum of the orbital angular momentum quantum
numbers should be an even number. This requirement results in a parity selection rule
for the angular momentum transitions given by

∆l′ =

{

−λ,−λ+ 1, λ− 1, λ for A · p transitions

−λ, λ, for A · A transitions
(3.150)

where λ is a positive integer equivalent to the photon angular momentum transferred to
the target state. This selection rule goes hand in hand with requirement that the change
in the projection quantum number ∆m′ = mλ is such that −λ ≤ mλ ≤ λ.

In this study, the polarization of the electric field vector has been chosen to be along
the +z direction, the magnetic field vector to be along +y direction, and the radiation
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Dipole Non−dipoleNon−dipole

A.A

A.p

A.p

Monopole

l_a−k+1, m_a−m

l_a−k, m_a−m

l_a−k−1, m_a−m

l_a+1, m_a

l_a, m_a

l_a−1, m_a

l_a+k+1, m_a+m

l_a+k, m_a+m

l_a+k−1, m_a+m

+1−k, −m

−k,−m

−k−1, −m

+1

−1

+k+1, +m

+k, +m

+k−1, +m

Figure 3.2: Orbital angular momentum selection criteria map for both A · p and A · A for a
k-th order multipole. The lines show possible transitions for the different interactions in the
radiation gauge in a system with either the initial or final state angular momentum quantum
numbers (la, ma) .

momentum vector to be along the +x direction. The selection rules summarised in Table
3.1 apply for each of the corresponding interaction Hamiltonians.

Gauge Interaction Selection Criteria

Length E · r ∆l′ = {−(l + 1),−l + 1, l − 1, (l + 1)} ∆m′ = m
A · r ∆l′ = {−(l + 1),−l + 1, l − 1, (l + 1)} ∆m′ = m
B · L ∆l′ = {−l + 1, l − 1} ∆m′ = m

B2r2 − (B · r)2 ∆l′ = {−(l + 2),−l, l, (l + 2)} ∆m′ = m∗

Radiation A · ∇ ∆l′ = {−(l + 1),−l + 1, l − 1, (l + 1)} ∆m′ = m
(A · A) ∆l′ = {−l, l} ∆m′ = m

Table 3.1: Selection rules defined for any particular order l of the multipole expansion of
the exponential retardation term eik·r. Here ∆l′ = |la − lb| , ∆m′ = |ma − mb|, and m∗ =
{m, m ± 2}.

The length-gauge interaction Hamiltonians presented in the Table 3.1 are extracted
from equation (3.94) where as the radiation gauge interaction Hamiltonians are straight
forward. In the table, vectors E and B correspond to the electric and magnetic field
vectors which are the temporal and the spatial derivatives of the vector potential A

respectively. An additional selection rule is provided in this case by the propagation
direction of the radiation field which in this case has been specified to be along the
+ x direction. This imposes a selection rule in the spherical harmonics such that the
transition matrix elements are non-vanishing only for the cases where Y m∗

l (k̂) is non-
zero. The consideration of the magnetic dipole transitions has been restricted further
by an additional selection rule provided by the principal quantum number ∆n = 0 3

[18] besides the usual angular momentum selection rules ∆l = 0 and ∆l = ±1. Figure
3.2 shows the pictorial map of possible transitions enabled by the l-th multipole-order

3The selection rule is discussed in equation 66.14 in [18]

49



3 Non-relativistic Solutions of the TDSE

terms for a system with arbitrary initial angular momenta, la and ma. For the sake
of clarity, the multipole-order in the map is defined with the index k as opposed to
l. In the calculations presented in the numerical solution of the non-relativistic time
dependent Schrödinger equation, both the electric and magnetic transitions have been
considered using the radiation gauge. The magnetic dipole transition resulting from the
quadrupole A · p term of the multipole expansion leads to two orbital angular momentum
conserving channels which are completely antisymmetric. On the contrary, the magnetic
monopole transition arising from the lowest order A · A term is symmetric and the
angular momenta are conserved in both l and m. The magnetic monopole transitions in
the Rayleigh multipole-order expansion series therefore eliminate the possibility of any
forbidden transitions and consequently reduce the lifetime of any possible metastable
states.

3.6.1 The Wigner 3j Coefficients

The properties of the spherical harmonics have already been discussed in section 3.1.4.
Here the concepts are only revisited for the purpose of discussing the Wigner-3j coeffi-
cients which are used in the evaluation of the angular integrals. The spherical harmonics
Y m

l (θ, φ) and Y −m
l (θ, φ) can be defined in terms of the associated Legendre Polynomials

Pm
l (cosθ) as

Y m
l (θ, φ) =

√

(2l + 1)

4π

(l −m)!

(l +m)!
Pm

l (cosθ) eimφ (3.151)

and

Y −m
l (θ, φ) =

√

(2l + 1)

4π

(l +m)!

(l −m)!
P−m

l (cosθ) e−imφ (3.152)

Since the negative m component of the associated Legendre polynomial P−m
l is related

to its corresponding positive component by the relation

P−m
l (cosθ) = (−1)m (l −m)!

(l +m)!
Pm

l (cosθ), (3.153)

the negative m component of the spherical harmonic Y −m
l (θ, φ) can also be expressed

in terms of its positive counterpart as

Y −m
l (θ, φ) = (−1)m Y m∗

l (θ, φ). (3.154)

The spherical harmonics have orthonormality conditions making them quite useful in
evaluating the three dimensional spatial integrals by reducing the problem into radial
integrals and angular integrals as already shown in the subsections 3.5.1 and 3.5.2 above.
Usually, the angular part is further simplified using the Clebsch Gordan, Racah, or
Wigner Coefficients. These coeffficients possess phase relations between themselves and
each of them obeys different symmetry properties. The implementation in the BEYDIP
code employs the Wigner-3j coefficients in evaluating the angular integrals. The following

50



3.7 Numerical Implementation of the Multipole Expansion

is an outline of some of the symmetry properties [20]

Cj1,j2,j3
m1,m2,m3

= (−1)j1+j2−j3 Cj1,j2,j3
−m1,−m2,−m3

(3.155)

Cj1,j2,j3
m1,m2,m3

= (−1)j2+m2

√

2j3 + 1

2j1 + 1
Cj3,j2,j1
−m3,m2,−m1

(3.156)

satisfied by the Wigner-3j coefficients used in the BEYDIP code. Using the two symme-
try properties stated, one can show further that

Cj3,j2,j1
m3,−m2,m1

= (−1)−j3+j1−m2

√

2j1 + 1

2j3 + 1
Cj1,j2,j3

m1,m2,m3
. (3.157)

Employing the relationship between the Racah coeffficients and the Wigner3j coefficients

Cj1,j2,j3
m1,m2,m3

= (−1)−j1+j2−m3
√

2j3 + 1
(

j1 j2 j3
m1 m2 −m3

)

(3.158)

on both sides yields an additional property
(

j3 j2 j1
m3 −m2 m1

)

= (−1)−m1−m2−m3

(

j1 j2 j3
−m1 m2 −m3

)

(3.159)

of the Wigner3j coefficients. The symmetry relations of the coefficients are quite in-
strumental in the optimization of computational resources. For example, the number of
transition matrix elements can be significantly reduced by just embracing the symmetry
relations.

3.7 Numerical Implementation of the Multipole Expansion

A general pulse of electromagnetic radiation can be described using a vector potential
of the form [19]

A(r, t) =
∫

∆ω
dωA0(ω) ε̂ [ei(ωt−k·r+δ) ± e−i(ωt−k·r+δ)] (3.160)

with the carrier frequency ω, the frequency dependent pulse amplitude A0(ω), the
wavevector k whose magnitude is related to the radiation wavelength by 2π/λ, and
the carrier envelope phase shift δ. From the vector potential A(r, t) and scalar potential
φ(r, t) describing an electromagnetic field, one can derive the electric and magnetic field
vectors which constitute the electromagnetic radiation using the relations

E = −1

c

∂A

∂t
− ∇Φ

B = ∇ × A

(3.161)
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3 Non-relativistic Solutions of the TDSE

and the fields satisfy the Maxwell’s equations in a region of space with no charge. From
the Maxwell’s equations, one can adopt the Coulomb gauge conditions ∇ · A = 0 and
Φ = 0 as the boundary conditions which the potentials must fulfil. The above expres-
sion of the vector potential can be instrumental in describing the photoabsorption and
the photoemission processes which occur during the interactions between matter and
electromagnetic radiation.

Ideally, the radiation from a laser source is monochromatic and coherent. One there-
fore needs not to integrate the vector potential over the frequency range ∆ω. Considering
that any interaction process consists of both absorption and emission processes occuring
simultaneously, a linear combination of both processes must be considered. The vector
potential can therefore be expanded, assuming a symmetric linear combination, as

A(r, t) =
1

2
A0 f(t) ε̂ [cos(ωt− k · r + δ) + i sin(ωt− k · r + δ)

+ cos(ωt− k · r + δ) − i sin(ωt− k · r + δ)]
(3.162)

where factor 1
2 denotes the random relative probabilities of both absorption and emission

processes. The expression simplifies to a real part

A(r, t) = A0 f(t) ε̂ cos(ωt− k · r + δ) (3.163)

for the symmetric linear combination or to an imaginary part

A(r, t) = A0 f(t) ε̂ sin(ωt− k · r + δ) (3.164)

for the antisymmetric linear combination. In the BEYDIP code implementation, the lat-
ter form of the vector potential is used but in principle any of the two forms or their linear
combination is still appropriate. Further expansion of the trigonometric function in the
vector potential using the equivalence relation sin(A−B) = sinA cosB − cosA sinB
yields

A(r, t) = A0 f(t) [sin(ωt+ δ)cos(k · r) − cos(ωt+ δ)sin(k · r)]. (3.165)

Similarly, the square of the vector potential considered in this case can be expanded as

A2(r, t) = A2
0 , f

2(t) (ε · ε) sin2[ωt− k · r + δ]

=
A2

0

2
f2(t) [1 − cos{2[ωt− k · r + δ]}]

=
A2

0

2
f2(t) [1 − cos(2ωt+ 2δ)cos(2k · r) − sin(2ωt+ 2δ)sin(2k · r)].

(3.166)

In a reduced notation, the vector potential and its square can be expressed respectively
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3.7 Numerical Implementation of the Multipole Expansion

as

A(r, t) = A1(t)cos(k · r) − A2(t)sin(k · r)

A2(r, t) =
1

2

[

A2
3(t) + [A2

1(t) − A2
2(t)]cos(2k · r) − 2[A1(t) · A2(t)]sin(2k · r)

] (3.167)

where the Ai=1,2,3 are defined as

A1(t) = A0 f(t) sin(ωt+ δ)

A2(t) = A0 f(t) cos(ωt+ δ) +
A0

ω
ḟ(t) sin(ωt+ δ)

A3(t) = A0 f(t).

(3.168)

The expansion of A2(r, t) employed the use of the trigonometric relations
cos(2A) = cos2A− sin2A and sin(2A) = 2 sinA cosA in the time-dependent functions.
The spatially dependent trigonometric functions, sin(k · r) and cos(k · r), can then be
expressed as

sin(k · r) =
1

2i
(eik·r − e−ik·r)

cos(k · r) =
1

2
(eik·r + e−ik·r).

(3.169)

These trigonometric functions can be expressed further in terms of the Rayleigh multi-
pole expansion of the retardation term eik·r yielding

sin(k · r) =
∑

l=1,3,5,···

+l
∑

ml=−l

4π i(l−1) jl(kr)Y
m∗

l (k̂)Y m
l (r̂)

cos(k · r) =
∑

l=0,2,4,···

+l
∑

ml=−l

4π il jl(kr)Y
m∗

l (k̂)Y m
l (r̂)

(3.170)

the sum of odd terms of the sequence, of products of spherical Bessel functions and
spherical harmonics of the same order, for the sine function sin(k · r) and the sum of
even terms of the sequence for the cosine function cos(k · r). An alternative expansion
of the trigonometric functions employ the Taylor’s series yielding

sin(k · r) =
∑

l=1,3,5,···
(−1)l−1 (k · r)l

l!

cos(k · r) =
∑

l=0,2,4,···
(−1)l (k · r)l

l!
.

(3.171)

A similar expansion can also be implemented for sin(2k · r) and cos(2k · r). With these
trigonometric functions in the Taylor’s expansion, and considering the polarization and
propagation directions to be along the +z and +x axis respectively, the terms in the
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3 Non-relativistic Solutions of the TDSE

non-relativistic interaction Hamiltonian up to the octupole terms can be re-written as

A · p +
1

2
A · A =A1(t) pz − kxA2(t) pz − k2x2

2
A1(t) pz

+
1

4
A2

3(t) +
1

4
[A2

1(t) −A2
2(t)]

− kx [A1(t)A2(t)] − k2x2

2
[A2

1(t) −A2
2(t)]

(3.172)

where the first term gives the standard dipole approximation, the second and the third
terms give the quadrupole and octupole corrections to the A · p term respectively. The
fourth and the fifth terms are solely time-independent contribution of A2 term which
can be removed by a phase transformation. The sixth and the seventh terms are the
quadrupole and octupole contributions of the A2 term respectively. In the equivalent
Rayleigh multipole series expansion, they become

A · p+
1

2
A · A

= 4π {A1(t) j0(kr) [Y 0∗

0 (k̂x)Y 0
0 (r̂)]pz

+
1

4
A2

3(t) +
1

4
[A2

1(t) −A2
2(t)] j0(2kr) [Y 0∗

0 (k̂x)Y 0
0 (r̂)]

−A2(t) j1(kr) [Y −1∗

1 (k̂x)Y −1
1 (r̂) + Y 1∗

1 (k̂x)Y 1
1 (r̂)] pz

− 1

2
[A1(t)A2(t)] j1(2kr) [Y −1∗

1 (k̂x)Y −1
1 (r̂) + Y 1∗

1 (k̂x)Y 1
1 (r̂)]

−A1(t) j2(kr) [Y −2∗

2 (k̂x)Y −2
2 (r̂) + Y 0∗

2 (k̂x)Y 0
2 (r̂) + Y 2∗

2 (k̂x)Y 2
2 (r̂)] pz

− 1

4
[A2

1(t) −A2
2(t)] j2(kr)

× [Y −2∗

2 (k̂x)Y −2
2 (r̂) + Y 0∗

2 (k̂x)Y 0
2 (r̂) + Y 2∗

2 (k̂x)Y 2
2 (r̂)]}

(3.173)

where the lth order of the spherical Bessel functions jl(kr) specify the contributions
of the corresponding multipole orders. It may be important to note that each of the
spherical Bessel functions is a series of infinite order polynomial and their equivalence
with the corresponding orders of the Taylor expansions in equation (3.172) is not exact
as will be shown in section 4.

Equations (3.172) and (3.173) are the leading equations implemented in this study
in going beyond the dipole approximation in the non-relativistic solution of the TDSE.
The extension of the equations to include higher multipole-order corrections can be
done by increasing the number of terms in the multipole expansion series. The Rayleigh
expansion has a structural advantage in the 3D solution of the TDSE in that it is already
pre-set in the spherical co-ordinates. The Taylor expansion on the other hand requires
change of co-ordinates if the spherical co-ordinate system would be advantageous to use.
An additional observation in the comparison of the two equations is that in the latter
equation, all terms have both spatial and temporal dependence and therefore no term
can be ignored on the basis of a phase transformation.
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3.8 Determination of the Ionization Yield

The above expressions are fully implemented in the BEYDIP code using the radiation
gauge with the option of choosing either the Taylor or the Rayleigh multipole expansion
series option. The transition matrix elements are evaluated up to an arbitrary order
n of the multipole interaction terms. The upper limit for any order of implementation
may be restricted depending on the desired accuracy and the available computational
resources.

3.8 Determination of the Ionization Yield

The non-relativistic dynamics of atoms interacting with a classical electromagnetic field
is governed by the time dependent Schrödinger equation

i
∂Ψ(r, t)

∂t
= [H0 + V (t)]Ψ(r, t) (3.174)

where H0 is the field-free Hamiltonian corresponding to the field-free eigen states, V (t)
is the radiation gauge interaction potential expressed in terms of momentum operator p

and the vector potential A(r, t) as

V (t) = −qA · p +
1

2
q2A2. (3.175)

The the expansion of these interactions up to the 2nd order multipole terms in Taylor and
Rayleigh series can be seen in equations (3.172) and (3.173) respectively in the previous
section.

The solution of equation (3.174) begins with a diagonalization procedure involving
only the field-free Hamiltonian H0 yielding the eigenvalues and the eigenvectors of the
field-free states. This procedure is already discussed in section 3.1.6 using the B splines
spectral expansion. In brief, the field-free bound and continuum states of the system
are obtained by considering the system (atom) to be confined within a spherical box
boundary of radius rmax. This leads to a discretization of the continuum spectrum,
whereas the bound states remain unmodified if rmax is chosen sufficiently large and not
too highly excited Rydberg states are considered. Introducing in the region (0, rmax) a
B spline set consisting of n + 2 spline functions Bi(r) of order k, the radial functions
are expanded in B splines as expressed in equation (3.45) but with the first and the last
splines removed from the expansion to ensure that the boundary conditions R(0) = 0
and R(rmax) = 0 are satisfied. With this condition, the radial Schrödinger equation is
then transformed into the n× n generalized banded eigenvalue problem with respect to
the coefficient vector

C = (ρ1, ρ2, · · · ρn) (3.176)

which yields n solutions for every orbital quantum number l.
For two coupled atomic states ψa and ψb characterised by the set of quantum numbers

α = {na, la,ma} and α′ = {nb, lb,mb} respectively, the time-dependent transition matrix
elements
Vba = 〈ψb | V (t) | ψa〉 corresponding to either A · p or A · A transitions evaluated in
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3 Non-relativistic Solutions of the TDSE

radiation gauge can be written as

Vab =
∑

l,m

6
∑

i=1

V i
b,a(t) (3.177)

where

V 1
b,a(t) = δ−mb,ma+m δlb,la+l+1 Ω1(lb,mb, l,m, la,ma) I1(nb, lb, k, l, na, la, t)

V 2
b,a(t) = δ−mb,ma+m δlb,la−l+1 Ω1(lb,mb, l,m, la,ma) I1(nb, lb, k, l, na, la, t)

V 3
b,a(t) = δ−mb,ma+m δlb,la+l−1 Ω2(lb,mb, l,m, la,ma) I2(nb, lb, k, l, na, la, t)

V 4
b,a(t) = δ−mb,ma+m δlb,la−l−1 Ω2(lb,mb, l,m, la,ma) I2(nb, lb, k, l, na, la, t)

V 5
b,a(t) = δ−mb,ma+m δlb,la+l Ω3(lb,mb, l,m, la,ma) I3(nb, l

′
b, k, l, na, la, t)

V 6
b,a(t) = δ−mb,ma+m δlb,la−l Ω3(lb,mb, l,m, la,ma) I3(nb, lb, k, l, na, la, t)

(3.178)

where the selection rules are embedded in the Kronecker deltas δl,l′ and δm,m′ . The eval-
uation of transition matrix elements in the radiation gauge has already been discussed
in section 3.5.1. The first four transitions originate from the A · p term while the last
two are from the A · A term .

The angular integrals evaluated in terms of Wigner-3j symbols are

Ω1 =
∑

m

(−1)mb

√

4π(2lb + 1)(2l + 1)(la +ma + 1)(la −ma + 1)

2la + 1

× Y ∗l,m(k̂x)

(

lb l la + 1
−mb m ma

)(

lb l la + 1
0 0 0

)

Ω2 =
∑

m

(−1)mb

√

4π(2lb + 1)(2l + 1)(la +ma)(la −ma)

2la − 1

× Y ∗l,m(k̂x)

(

lb l la − 1
−mb m ma

)(

lb l la − 1
0 0 0

)

Ω3 =
∑

m

(−1)mb

√

4π(2lb + 1)(2l + 1)(2la + 1)

× Y ∗l,m(k̂x)

(

lb l la
−mb m ma

)(

lb l la
0 0 0

)

(3.179)

and the radial integrals are described by

I1(t) = −il̂+1Al(t)
∫

dr [Rnb,lb(r) jl(kr)(
∂Rna,la(r)

∂r
− la

Rna,la(r)

r
)]

I2(t) = −il̂+1Al(t)
∫

dr[Rnb,lb(r) jl(kr)(
∂Rna,la(r)

∂r
+ (la + 1)

Rna,la(r)

r
)]

I3(t) = il̂
Asq

l (t)

2

∫

dr [Rnb,lb(r) jl(2kr)Rna,la(r)]

(3.180)
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with l̂ = l, Al(t) = A1(t), Asq
l (t) = [A2

1(t)−A2
2(t)]/2 whenever l is even or with l̂ = l − 1,

Al(t) = −A2(t), Asq
l (t) = −[A1(t) ·A2(t)] whenever l is odd. The time-dependent func-

tions Ai=1,2,3 are defined in equation (3.168).

The TDSE in equation (3.174), with the substitution of equation (3.175) into it,
reduces to a system of coupled first order ordinary differential equations.

iĊα(t) = Cα (t)Eα +
∑

α′

Cα′(t)Vαα′(t) +
∑

α′′

Cα′′(t)Vαα′′(t) (3.181)

which are integrated numerically using a variable-order, variable-step Adams solver [114].
The ionization yield, after the pulse, is then obtained by summing over all the continuum
states

Yion =
∑

α,Eα>Eion

| Cα(
τ

2
) |2 (3.182)

where Eion is the ionization potential.

3.9 Probability Distributions

Besides the total ionization yield, the energy or angle resolved photoelectron distributions
can also be extracted from the wave packet at the end of the laser pulse. The method
described here follows the outline of reference [93, 115]. The most detailed energy and
angular distribution is given by the formula

P (E,Ω) = k |A(E,Ω)|2 (3.183)

where Ω = k/k is the direction of the asymptotic momentum k of the photoelectron of
energy E = k2/2. The photoionization amplitude A(E,Ω) is obtained by projecting the
wave function at the end of the pulse onto the incoming continuum solutions,u(−)(k, r),
as

A(E,Ω) = 〈u(−)|Ψ(t = +τ/2)〉. (3.184)

The functions u(−)(k, r) can be expanded in partial waves,

u(−)(k, r) =
4π

(2π)3/2

∞
∑

l=0

l
∑

m=−l

il e−iδl Y m∗

l (Ω) × χl(k, r)

r
Y m

l (r̂) (3.185)

where the radial eigenfunction χl has the asymptotic behaviour (for r → ∞)

lim
r→+∞

χl(k, r) ≈ 1

k
sin
[

kr − lπ

2
+ δc(k, r) + δl(k)

]

. (3.186)

The phase δc(k, r) is the logarithmic term inherent to the Coulomb potential and δl(k)

57



3 Non-relativistic Solutions of the TDSE

is the Coulomb phase shift. For the amplitude A(E,Ω), one obtains the expansion

A(E,Ω) =
∞
∑

l=0

l
∑

m=−l

Al,m(k)Y m
l (Ω) (3.187)

where

Al,m(k) =
4π

(2π)3/2
il e−iδl

∑

n

c(l,m)
n (t =

+τ

2
) Inl(k) (3.188)

and

Inl(k) ≡
∫ rmax

0
χl(k, r)Rnl(r)dr. (3.189)

with Rnl being basis set radial states used in the spectral expansion of the wave packet
Ψ. For the numerical evaluation of the radial integral Inl(k), at an energy E not too
close to the eigenvalue Enl, one can use the formula

Inl(k) =
χl(k, rmax)

k − knl

R′nl(rmax)

k + knl
(3.190)

derived from the Wronskian theorem attached to the radial Schrödinger equation. In
equation (3.190), knl =

√
2Enl and R′nl(rmax) = (dRnl/dr)|r=rmax .

3.9.1 Photoelectron Angular Distribution (PAD)

The photoelectron angular distribution (PAD) can be determined by integrating the
function P (E,Ω)

P (Ω) =
∫

|A(E,Ω)|2dE (3.191)

with respect to all possible photoelectron energies. In order to reproduce the dependence
of ionization probability on the azimuthal angle analogous to the experimental obser-
vations [116–118], the amplitude Al,m(k) is modified in equation (3.187) by including
the prefactor cos(mφ/2) for the cases where m 6= 0 and using the alternative density of
states formulation

P (Ω) =
∑

l,m,Eα>Eion

|Al,m(Eα)Y m
l (Ω)|2/∆E. (3.192)

where ∆E = (En+1,l − En−1,l)/2. Given the normalization of the function u(−)(k, r) to
unity, the coefficient 1/∆E corresponds to the density of the discretized state [93].

It is common in many cases to estimate the electron angular probability distribution
by [118, 119]

dP

dΩ
=
Ptot

4π

[

1 +
β

2
(3 cos2 θ − 1) + (δ + γ cos2 θ) sin θ cosφ

]

(3.193)

where θ and φ are the polar and azimuthal angles respectively, β, δ, and γ are the dipole,
electric quadrupole, and magnetic dipole asymmetry parameters, respectively, and Ptot
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3.9 Probability Distributions

is the total ionization probability. The PADs when measured accurately can be used to
provide stringent tests for theoretical calculations [116].

3.9.2 Photoelectron Energy Spectrum (PES)

The energy distribution can be determined by summing all the partial photoelectron
spectra, Pl,m(E), as

P (E) =
∑

l,m

Pl,m(E) ≈
∑

l,m,Eα>Eion

|C(l,m)
α |2/∆E. (3.194)

An interpolation procedure is performed for each channel l,m in order to evaluate
Pl,m(E) and subsequently P (E). With respect to all possible photoelectron angular
geometries, the photoelectron energy spectrum (PES) can also determined by integrat-
ing P (E,Ω)

P (E) =
∫

|A(E,Ω)|2dΩ = k
∑

l,m

|Alm(k)|2. (3.195)

3.9.3 LOPT Calculation of Distributions

Although the TDSE is considered to be very accurate in calculating photoelectron dis-
tributions, it does not give clear physical insights as to why particular types of behaviour
occur in physical systems [85]. This limitation of the TDSE can be mitigated by us-
ing various analytical or perturbative methods. In particular, the perturbation theory
has been very useful in interpreting numerical results. In the lowest-order perturbation
theory (LOPT), the single-photon ionization amplitude for the case of an initial s state
(l = 0) is given explicitly as [115]

A(E,n) = β1(k) cos θ + β2(k) sin θ cos θ cosφ (3.196)

where θ and φ are the polar and azimuthal angles of the direction n. The coefficients β1,2

are functions of energy and they are related to the partial amplitudes A10 and A21. That
is, β1 =

√

3/4πA10(k) and β2 =
√

15/2πA21(k). Using equation (3.191), the angular
distribution takes the form

P (n) = (λ1 + λ2 sin θ cosφ+ λ3 sin2 θ cos2 φ) cos2 θ (3.197)

where the real coefficients λi are constant. Their values can be determined from the
exact numerical values of P (n) by a fitting procedure.

The energy spectrum can be obtained as

P (E) ≈ k(|A1,0(k)|2 + 2|A2,1(k)|2). (3.198)

Within the perturbative regime, cross sections can be evaluated from the TDSE calcu-
lations using a simple relation with the calculated ionization probability PN . For the
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3 Non-relativistic Solutions of the TDSE

absorption of N photons it takes the form

σN = C(N)
(

ω

I

)N PN

τ
(3.199)

where the cross section is given in cm2N sN−1, the intensity I in Wcm−2, the photon
energy ω in joules, and the total pulse duration τ in seconds. The weighting coefficients
C(N) takes into account the effective pulse duration, which depends on the pulse enve-
lope. For a cos2 pulse, C(1) = 8/3, C(2) = 128/35, · · · are the values of the weighting
coefficients for the corresponding photon orders [115].

3.10 Asymmetry Parameters

The experimental measurement of the asymmetry parameters provide a stringent test for
theory. Within the dipole approximation, the ionization probability is known to exhibit
an asymmetric distribution with respect to the polar angles θ but a symmetric one in the
azimuthal angle distribution. It is common practice [119] to express the distributions
from multipolar interactions in the form

dP

dΩ
=
Ptot

4π

∑

l,m

Bn,mP
m
l (cos θ) cosmφ (3.200)

where Ptot is the total ionization probability, θ is the angle between the electric field
vector of the incident photon and the ejected-electron directions, and Bn,m are the
asymmetry parameters, with B0,0 = 1 and all other asymmetry parameters are generally
functions with complex dependence on polar angle θ, radial transition matrix elements,
and phase-shifts [116].

The non-dipole interactions, on the other hand, result in photoelectron distributions
with a dependence on both polar and azimuthal angles. The non-dipole effects can
therefore be seen by examining the deviation from the dipolar distributions in the polar
plane. The forward-backward asymmetry in the azimuthal plane is also remarkable
and quite instrumental in the experimental detection of the non-dipole effects. Here, the
probability distribution in the direction of the laser propagation in the azimuthal plane is
different from the distribution in the opposite direction, while the left-right distribution
is symmetric. The forward-backward asymmetry parameter Af−b can be defined as the
ratio [93]

Af−b =
Pf − Pb

Pf + Pb
(3.201)

where Pf is the probability of forward photoelectron ejection (k̂ · r̂ > 0) and Pb is the
probability of backward photoelectron ejection (k̂ · r̂ < 0).

60



3.11 Numerical Errors

3.11 Numerical Errors

As in any numerical process, errors are generated in the computation of the time-
dependent matrix elements and subsequently in the calculation of probabilities. Ap-
proximations and random errors usually contribute more in the lack of desired accuracy.
The orthonormalization process of the B spline basis set may be another likely source
of the errors if it is not achieved with reasonable accuracy. These errors cumulatively
may lead to a deviation from the normalization condition of all probabilities as required
by the statistical theory of quantum mechanics. The magnitude of the errors increase
with the field amplitude, the number of states included in the TDSE, the order of the
multipole expansion evaluated, and the number of iterations used for full convergence
at every time step.

In the vector calculation from the coupled integro-differential equations, the coefficient
of the ith state is determined from the equation

iĊi(t) = Ci(t)Ei +
n
∑

j

Cj [Vij + δij(t)] (3.202)

where Ei is the eigenvalue corresponding to the field-free ith eigenstate, Cj is the coeffi-
cient of the jth eigenstate connected to the ith state by the earlier defined selection rules,
and δij(t) is the numerical noise. For the implementation of the multipole expansion,
the total accrued error

δi(t) = A(t)
n
∑

j

δij +
A2(t)

2

n
∑

j′

δij′ (3.203)

arises from the partial evaluation of the time dependent transition matrix elements and
are amplified by the field magnitude as seen in the above equation. The first term on the
right is a sum of errors contributed by the A · p transitions while the second term is the
sum of errors generated from the A · A transitions. The effect of these errors at lower
field intensities and at the lowest-order of the multipole expansion may be negligible.
But at higher intensities and/or higher orders of the multipole expansion requiring the
inclusion of several states for convergence, the impact of the errors on the numerical
convergence of probabilities can be very large leading to inaccuracies in the calculated
probabilities as well as time-demanding time propagation to achieve full convergence
in every time-step. The numerical noise can be reduced to a greater extent by using
accurate basis-set diagonalization routines and by taking advantage of symmetry as well
as analytical simplification of the numerical processes involved where possible.

3.12 Implicit Time Propagation Routine

A fully implicit scheme is implemented in the extended BEYDPIP code. The implicit
scheme is preferred because it is known to offer a high degree of stability as compared
to the explicit schemes, although they generally involve more iterations per time-step.
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3 Non-relativistic Solutions of the TDSE

This section provides some insight into the implicit time-propagation routine.

The fully implicit coupled integro-differential equations

iĊα(t) = Cα(t)Eα +
∑

α′

Cα′(t)Vαα′(t) (3.204)

obtained from the solution of the TDSE with the initial conditions

Cα(t0) =

{

1 if α = αi

0 if α 6= αi

(3.205)

defined at t = t0 and a particular initial state αi can be re-expressed as

i
Ċα

Cα
= Eα + Vαα(t) +

∑

α′ 6=α

γα′(t)Vαα′(t); γα′ =
Cα′

Cα
. (3.206)

The total probability for an electron described by the wave packet to be found at any
point in space at any instant of time is unity. This means that the amplitude of one
state

∑

α

|Cα|2 = 1 or |Cα′ | =
√

1 −
∑

α′′ 6=α′

|Cα′′ |2 (3.207)

can be expressed in terms of all the other amplitudes, but the phase information is lost
in this process. If the phase information is neglected , the coupled integro-differential
equation (3.206) in integral form can then be written as

ln
Cα(t)

Cα(t0)
= −i

∫ t

t0

dt [Eα + Vαα(t) +
∑

α′ 6=α

γα′(t)Vαα′(t)]

or

Cα(t) = Cα(t0) exp{−i
∫ t

t0

dt [Eα + Vαα(t) +
∑

α′ 6=α

γα′(t)Vαα′(t)]} + κ

(3.208)

Alternatively, equation (3.204), together with the predetermined initial conditions,
can be solved iteratively by the numerical time-propagation routines using suitable time
steps. The integral can be numerically formulated as

Cα(tn+1) = Cα(tn) +
∫ tn+1

tn

Ċα(tn) dt (3.209)

where n is the number of time steps used in the integration process. In this work,
the numerical advantage of the variable Adams-Bashforth-Moulton predictor-corrector
adaptive routine [120] is exploited for the time integration but the possibility of using
the Runge-Kutta methods is also implemented.
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3.13 Five-State Model Including Non-Dipole Corrections

In order to get a simple picture of the interaction dynamics in the TDSE, the integro-
differential equations for the ground (1s0) state and the first four lowest excited states
of the hydrogen atom is generated. These excited states are explicitly chosen to be 2s0,
2p0, 2p−1 and 2p1. The subscripts denote the index of the magnetic quantum numbers
for each symmetry. We consider the 1s state as the initial state. The selection rules
are embedded in the time-dependent transition matrices Mαα′(t). The coefficients of the
initial state can be written as

Cα = δ1s,α (3.210)

where the Kronecker delta has value 1 for the initial state and zero otherwise. The
coupled integro-differential equations for each of the five states can then be written as

Ċ1s0 = −i{C1s0E1s0 + C1s0M1s01s0 + C2s0M1s02s0 + C2p0M1s02p0

+ C2p1M1s02p1 + C2p−1M1s02p−1}
Ċ2s0 = −i{C2s0E2s0 + C1s0M2s01s0 + C2s0M2s02s0 + C2p0M2s02p0

+ C2p1M2s02p1 + C2p−1M2s02p−1}

Ċ2p0 = −i{C2p0E2p0 + C1s0M2p01s0 + C2s0M2p02s0 + C2p0M2p02p0

+ C2p1M2p02p1 + C2p−1M2p02p−1}
Ċ2p1 = −i{C2p1E2p1 + C1s0M2p11s0 + C2s0M2p12s0 + C2p0M2p12p0

+ C2p1M2p12p1 + C2p−1M2p12p−1}
Ċ2p−1 = −i{C2p−1E2p−1 + C1s0M2p−11s0 + C2s0M2p−12s0 + C2p0M2p−12p0

+ C2p1M2p−12p1 + C2p−1M2p−12p−1}.

(3.211)

The variable t has been omitted in this fully implicit implementation only for conve-
nience. It is clear that each of the state coefficients at the end of each time step will
have a unique value. This value depends on the initial conditions, the transition matrix
elements between the state and each of the states if allowed by the selection rules, the
field-free energy of the state itself. Due to the dependence of the transition matrix ele-
ments on the quantum numbers defining the geometry of the initial state, the symmetric
population distribution of the degenerate levels is likely to be broken for transitions of
any multipole order.

Focussing on the 2p degenerate states in equation (3.211), making use of the known
symmetry properties of the transition matrices, and removing the non-interacting com-
ponents as defined by the dipole term and its leading-order correction (1 + ik · r), one
obtains

Ċ2p0 = −i{C2p0E2p0 + C1s0M2p01s0 + C2s0M2p02s0 + C2p0M2p02p0

+ C2p+1M2p02p1 + C2p−1M2p02p−1}
Ċ2p+1 = −i{C2p+1E2p+1 + C1s0M2p+11s0 + C2s0M2p+12s0 + C2p0M2p12p0}
Ċ2p−1 = −i{C2p−1E2p−1 − C1s0M2p+11s0 − C2s0M2p+12s0 − C2p0M2p+12p0}.

(3.212)
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3 Non-relativistic Solutions of the TDSE

If the first time-step ∆t1 only is considered, the equation simplifies to

Ċ2p0 = −i{M2p01s0 + δ1s,α(E2p0 +M2p02s0 +M2p02p0

+M2p02p+1 +M2p02p−1)}
Ċ2p+1 = −i{M2p+11s0 + δ1s,α(E2p+1 +M2p+12s0 +M2p+12p0)}
Ċ2p−1 = −i{−M2p+11s0 + δ1s,α(E2p+1 −M2p+12s0 −M2p+12p0)}.

(3.213)

For δ1s,α = 0 then it can be seen that Cnl+ = −Cnl− and the population distribution
of the magnetic sublevels of opposite parity would be symmetric at the end of the
interaction. But if δ > 0 (as a possible case study) regardless of its magnitude, it breaks
the symmetry property of the magnetic sublevels of opposite parity by introducing equal
Zeeman type splitting of energy levels of the sublevels of opposite parity. This leads to
an asymmetric population distribution of the sublevels of opposite parity at the end of
the laser pulse. The possible sources of asymmetry could be the contribution of random
processes like flourescence and spontaneous emissions [121] or the process of optical
pumping [122] where a circularly or elliptically polarized coherent pulse can only allow
transitions in m in a specific direction.

3.14 Analytical Comparison of Hydrogen Transition Matrix
Elements

The hydrogen time-independent wavefunction Ψ(r) can analytically be expressed as
a product of three functions F (φ), P (θ), and R(r), which depend on the indicated
angular and radial co-ordinates. The analytically calculated transition matrix elements
are compared with the ones evaluated numerically in radiation gauge. This was necessary
for checking the correctness of the implementation and the accuracy of the results given
that the wavefunctions of hydrogen atom are analytically known. If the implementation
is correct, the accuracy of the numerically calculated transition matrix elements would
depend further on the quality of the numerically generated orbitals. The quality of
orbitals obtained using the B splines increase with the box radius rmax, number of B
splines, the order of B splines, and the type of knot sequence employed as already
discussed in section 3.1.6. The transition matrix elements are calculated based on the
Taylor expanded multipole interaction Hamiltonian in equation (3.172). Table 3.2 lists
the first few solutions of the hydrogen atom specified by the quantum numbers n, l, and
m.
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n l m F (φ) P (θ) R(r)

1 0 0 1√
2π

1√
2

2

a
3
2
0

e
−r
a0

2 0 0 1√
2π

1√
2

1

2
√

2a
3
2
0

[2 − r
a0

]e
−r
2a0

2 1 0 1√
2π

√
6

2 cos θ 1

2
√

6a
3
2
0

r
a0

e
−r
2a0

2 1 ±1 1√
2π

e±iφ
√

3
2 sin θ 1

2
√

6a
3
2
0

r
a0

e
−r
2a0

Table 3.2: Table showing the first few solutions of the hydrogen atom separated in the radial
R(r) and spherical (P (θ), F (φ)) parts for the states specified by the quantum numbers n, l,
and m. The table entries is taken from [123] .

3.14.1 Dipole Transition Matrix Elements

The dipole transition matrix elements between two hydrogen states is given by

〈ψb | A · p +
1

2
A · A | ψa〉 = 〈ψb | A · p | ψa〉 +

1

2
〈ψb | A · A | ψa〉. (3.214)

The two terms of the non-relativistic interaction Hamiltonian A · p and A · A have
different selection rules leading to different final states and different symmetry for corre-
sponding multipole orders. For example, within the dipole approximation the l quantum
number changes by ±1 for the A · p transition while there is no change for the A · A

transition. In both cases the m quantum number remains conserved for this lowest
multipole-order expansion in case of a linearly polarized radiation with the electric field
vector along the +z direction.

The transitions of both terms from the ground state to the lowest states coupled
by the multipole terms of the interaction Hamiltonian are considered. The polarization
direction of the laser pulse is chosen to be along the +z axis and the propagation direction
to be along the +x axis. Starting with the A · p transition matrix elements, one obtains

〈ψ2p | A · p | ψ1s〉 = 〈ψ2p | A1(t)pz | ψ1s〉 = A1(t)〈ψ2p | pz | ψ1s〉. (3.215)

The time independent part can be evaluated as

ψnb,lb,mb
| pz | ψna,la,ma〉 = −βla,ma ×

∫ ∞

0
dr r2Rnb,lb

{

∂Rna,la

∂r
− la

Rna,la

r

}

(3.216)

where βla,ma

βla,ma =

√

(la + 1)2 −m2
a

4(la + 1)2 − 1
(3.217)

is an angular factor equivalent to the pre-factor of the first part of equation (3.121). It

65



3 Non-relativistic Solutions of the TDSE

simplifies to lb/
√

4l2b − 1 if ma = 0 and lb = la + 1. Therefore, substituting the radial
parts of ψ2p and ψ1s, one obtains

〈ψ2p | pz | ψ1s〉

= −β0,0 ×
∫ ∞

0
dr r2R2,1

{

∂R1,0

∂r
− la

R1,0

r

}

= −β0,0 ×
{
∫ ∞

0
dr r2R2,1

∂R1,0

∂r
− la

∫ ∞

0
dr rR2,1R1,0

}

= −β0,0 ×
{
∫ ∞

0
dr r2 1

2
√

6
r e

−r
2 × −2 e−r − la

∫ ∞

0
dr r

1

2
√

6
re

−r
2 × 2 e−r

}

= −β0,0 × 1√
6

{

−
∫ ∞

0
dr r3 e

−3r
2 − la

∫ ∞

0
dr r2 e

−3r
2

}

= −β0,0 × 1√
6

{− 3!

1.54
− la × 2!

1.53
}

= −β0,0 × 1

1.53 ×
√

6
{− 3!

1.5
− 0 × 2!} = 0.279350827

(3.218)
This analytical value (0.279350827) is compared to a numerically calculated value
(−0.279350827) evaluated using a maximum box radius of 200 a.u. and 600 B splines
with a non-linear knot sequence. The numerical value is an agreement with the analytical
value up to 9 significant digits. The difference in sign could be a consequence of the
phase of the numerically calculated radial orbitals which is not present in the analytical
solutions used. Similarly, from the A · A transition matrix elements one obtains

1

2
〈ψ1s | A · A | ψ1s〉 =

1

4
〈ψ1s | [A2

1(t) −A2
2(t)] | ψ1s〉

=
1

4
[A2

1(t) −A2
2(t)] 〈ψ1s | ψ1s〉.

(3.219)

The angular factor for this problem is unity for identical l and m quantum numbers and
zero otherwise. Thus the time independent integral reduces to

〈ψ1s | ψ1s〉 =
∫ ∞

0
dr r2R1sR1s

=
∫ ∞

0
dr r2 4 e−2r

= 4 × 2!

23
= 1

(3.220)

This analytical value (1.000000000) is compared to a numerically calculated value
(1.0000000000) evaluated using a maximum box radius of 200au and 600 B splines with a
non-linear knot sequence. The numerical value is in exact agreement with the analytical
value.
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3.14.2 Quadrupole Transition Matrix Elements

The quadrupole transition matrix elements between two hydrogen states is given by

〈ψb | A2(t)
2πx

λ
pz +

1

4
[A2

1(t) −A2
2(t)]

4πx

λ
| ψa〉 (3.221)

where A1(t) and A2(t) are the corresponding time-dependent functions predefined in
equation (3.168). The first term of the equation (3.221) contains the electric quadrupole
and the magnetic dipole transitions. Inclusion of the magnetic dipole transition yields
the effect of the magnetic field produced by the radiation and it should incorporate
the effect of spin-magnetic field interaction for completeness [18]. This is because the
interactions are of the same order ∼ 1/c of the fine structure constant. The interaction
Hamiltonian is modified further by interaction between the spin magnetic moment and
the resultant magnetic field. The second term in equation (3.221) contains only the
effect of the diamagnetism present in the A2 term.

By re-writing the quadrupole transition matrix in spherical co-ordinates, one can
express the variable x as

x =
4π

3
r

∑

m=−1,1

Y m∗
1 (x̂)Y m

1 (r̂). (3.222)

The quadrupole transition matrix element therefore becomes

〈ψb | A2(t)
2πx

λ
pz +

1

2
Asq(t)

4πx

λ
| ψa〉

= 〈ψb | A2(t)
2πx

λ
pz | ψa〉 +

1

2
Asq(t)〈ψb | 4πx

λ
| ψa〉

= A2(t)
8π2

3λ

∑

m=−1,1

Y m∗
1 (k̂x)〈ψb | r Y m

1 (r̂) pz | ψa〉

+
Asq(t)

2

16π2

3λ

∑

m=−1,1

Y m∗
1 (k̂x) 〈ψb | r Y m

1 (r̂) | ψa〉.

(3.223)

where Asq(t) = [A2
1(t) −A2

2(t)]/4.

3.14.3 Electric Quadrupole Transition Matrix Element

The time independent part of the electric quadrupole transition from the ground (1s)
state of hydrogen atom to the excited (3d) state with the m = 1 and m = −1 quantum
numbers is first evaluated. The electric quadrupole transition matrix element between

67
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the two states can be expressed as

8π2

3λ
Y 1∗

1 (k̂x) 〈ψb | r Y m
1 (r̂) pz | ψa〉

= −βlb,mb,la,ma ×
∫ ∞

0
dr r2 r Rnb,lb

{

∂Rna,la

∂r
− la × Rna,la

r

}

= −βlb,mb,la,ma ×
∫ ∞

0
dr r2 r Rnb,lb

∂Rna,la

∂r

= −βlb,mb,la,ma ×
∫ ∞

0
dr r2 4r

81
√

30
r2e

−r
3 × −2e−r

= −βlb,mb,la,ma × −8

81
√

30

∫ ∞

0
dr r5 e

−4r
3

= βlb,mb,la,ma × 8

81
√

30

5!

(4/3)6

(3.224)

with the pre-factor βlb,mb,la,ma containing the spectral information and the angular factor
evaluated as

βlb,mb,la,ma =
8π2

3λ
Y 1∗

1 (k̂x) ×
√

(la + 1)2 −m2
a

4(la + 1)2 − 1
×
∫

dΩY mb∗
lb

(r̂)Y 1
1 (r̂)Y ma

la+1(r̂)

=
8π2

3λ
Y 1∗

1 (k̂x) ×
√

(la + 1)2 −m2
a

4(la + 1)2 − 1
×
√

(2lb + 1) × 3 × (2la + 3)

4π

×
(

lb 1 la + 1
−mb 1 ma

)(

lb 1 la + 1
0 0 0

)

× (−1)mb

β2,1,0,0 =
8π2

3λ
Y 1∗

1 (k̂x) ×
√

1

3
×
√

5 × 3 × 3

4π

(

2 1 1
−1 1 0

)(

2 1 1
0 0 0

)

× (−1)1

= −1.147147441

λ
(3.225)

The electric quadrupole matrix element between the 1s state and the 3 d1 resonant state
corresponding to 13 nm wavelength radiation therefore simplifies to

8π2

3λ
Y 1∗

1 (k̂x)〈Ψ3d | rY 1
1 (r̂)pz | Ψ1s〉 = − 1.147147441

13 × 18.897261
× 8

81
√

30

5!

1.333336

= −0.1798332837E − 02

(3.226)

This analytical value (−0.1798333333E − 02) is in agreement with our numerically
calculated value (0.17990571552055E − 02) up to 4 significant figures. The factor
E − 02 = 10−2.
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3.14.4 Magnetic Dipole Transition Matrix Element

Magnetic dipole transitions are also embedded in the 1st order corrections to the A · p

term of the interaction Hamiltonian just like the electric quadrupole transition. The
difference between them comes in the selection rules. In the magnetic dipole transi-
tions, the orbital angular momentum quantum number is conserved (∆l = 0) while the
projection quantum number can change by a unit value (∆m = ±1).

The magnetic dipole transition matrix element between 2p0 and 2p−1 resonant states
is

8π2

3λ
Y 1∗

1 (k̂x) 〈ψ2p0 | r Y 1
1 (r̂) pz | ψ2p−1〉

= −β1,1,1,0 ×
∫ ∞

0
dr r3R2,1

{

∂R2,1

∂r
− 1 × R2,1

r

}

= −β1,1,1,0 ×
∫ ∞

0
dr r3R2,1

∂R2,1

∂r
− R2,1

r

= −β1,1,1,0 ×
∫ ∞

0
dr r3 1

2
√

6
r e

−r
2 × [

∂

∂r
(

1

2
√

6
r e

−r
2 ) − 1

2r
√

6re
−r
2

]

= −β1,1,1,0 × 1

24
× {

∫ ∞

0
dr r4 e

−r
2 [

−1

2
re

−r
2 + e

−r
2 − e

−r
2 ]}

= −β1,1,1,0 × −1

48
×
∫ ∞

0
dr r5 e−r

= β1,1,1,0 × 5!

48
.

(3.227)

The pre-factor β1,0,1,1 yields

β1,1,1,0 =
8π2

3λ
Y 1∗

1 (k̂x) ×
√

4

15
×
√

3 × 3 × 5

4π

(

1 1 2
−1 1 0

)(

1 1 2
0 0 0

)

× (−1)1

=
0.592383186

λ
(3.228)

The magnetic dipole matrix element between the 2p0 state and the 2p−1 state for the
13 nm wavelength radiation therefore simplifies to

8π2

3λ
Y 1∗

1 (k̂x)〈ψ2s | r Y 1
1 (r̂) pz | ψ2p−1〉 =

0.592383186

13 × 18.897261
× 5!

48
= 0.6028378589E − 02

(3.229)

This analytical value (0.6028378589E − 02) is compared to our numerically calculated
value (0.6030817225167E − 02) yielding an agreement up to 3 significant digits. The
difference between the magnetic dipole transition matrix element evaluated and the
electric quadrupole transition matrix element evaluated in subsection 3.14.3 comes from
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the angular integral as well as the sizes of the different orbitals coupled.

3.14.5 Quadrupole A · A Term Transition Matrix Element

The transition matrix element corresponding to the A ·A quadrupole interaction Hamil-
tonian can in general be expressed as

TA·A
b←a =

16π2

3λ
Y 1∗

1 (k̂x) 〈ψb | r Y 1
1 (r̂) | ψa〉

= βII
lb,mb,la,ma

×
∫ ∞

0
dr r2Rnblb r Rnala

(3.230)

where the pre-factor

βII
lb,mb,la,ma

=
16π2

3λ
Y m∗

1 (k̂x)
∫

dΩY mb∗
lb

Y m
1 Y ma

la

=
16π2

3λ
Y m∗

1 (k̂x)

√

(2lb + 1) × 3 × (2la + 1)

4π

×
(

lb 1 la
−mb m ma

)(

lb 1 la
0 0 0

)

× (−1)mb

(3.231)

contains both the angular and spectral information. Here m = −1 or 1 correspond to
the allowed magnetic quantum numbers. We consider the transition from the 1s state
to the 2p1 state as an example of the allowed transition for this interaction term.

The transition matrix element for this transition is

TA·A
2p←1s =

16π2

3λ
Y 1∗

1 (k̂x) 〈ψ2p | r Y 1
1 (r̂) | ψ1s〉

= βII
1,1,0,0 ×

∫ ∞

0
dr r2R2p r R1s

= βII
1,1,0,0 ×

∫ ∞

0
dr r2 r

1

2
√

6
r e

−r
2 2e−r

= βII
1,1,0,0 × 2

2
√

6

∫ ∞

0
dr r4 r e

−3r
2

= βII
1,1,0,0 × 1√

6
× 4!

1.55

(3.232)

The pre-factor βII
1,1,0,0 simplifies to

βII
1,1,0,0 =

16π2

3λ
Y 1∗

1 (k̂x)

√

3 × 3 × 1

4π

(

1 1 0
−1 1 0

)(

1 1 0
0 0 0

)

× (−1)1

= −5.130194545

λ

(3.233)

and the transition matrix element evaluated analytically for the 13 nm radiation wave-
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length becomes

TA·A
2p←1s = − 5.130194545

13 × 18.897261
× 1√

6
× 4!

1.55
= −0.2694455E − 01 (3.234)

This analytical value −0.2694455E − 01 agrees with our numerically calculated value
(0.26955420602E − 01) up to 4 significant figures. Except for the 0th multipole-order
terms, the agreement between the analytically determined transition matrix elements is
not very good. The source of this lower precision needs to be investigated further.

Chapter Summary

In this chapter, the theoretical and the mathematical background of the method em-
ployed in the study is discussed. The details of implementation adopted in the ex-
tended BEYDIP code and the method of determination of the physical observables is
also discussed. A comparison between some analytically and numerically determined
multipole-order transition matrix elements is also presented. Chapter 4 can be seen as
an extension of this chapter since it compares the Rayleigh and the Taylor plane-wave
multipole expansion series which incorporate the beyond-dipole effects, being the theme
of this study.
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4 Taylor versus Rayleigh Plane-wave
Expansion

As experimentalists explore new opportunities in strong-field physics offered by current
generation light sources, new theoretical tools become inevitable in dealing with the
challenging strong-field non-linear dynamics. In this chapter, the Rayleigh plane-wave
multipole expansion series which offers a viable alternative to the conventional Taylor
expansion of the spatial phase retardation term eik·r is tested. A reasonable comparison
of the expansions of the retardation term, eik·r between the Rayleigh and Taylor plane-
wave multipole expansion methods is made. This is done by first approximating the
real and the imaginary components of the exponential function with the angle between
the radial vector and the direction of propagation chosen to be 45◦. The second level
of comparison involves the use of the various approximation orders in the numerical
solution of the TDSE. The other goal of this chapter is to give insights into the most
optimal method of solving the TDSE beyond the dipole approximation whose validity is
questionable in the strong-field regime.

It is verified that the Rayleigh plane wave multipole expansion, employing the regular
spherical Bessel functions as the radial functions of the partial waves, provides a larger
validity range in comparison to the widely used Taylor multipole expansion. It is also
noted that the Taylor expansion of the plane wave up to a given order reproduces the
lower kr limits of the Rayleigh expansion series, but deviates strongly in the asymptotic
regime. It can be concluded that the use of the Rayleigh plane-wave expansion provides
the most accurate contribution of any given order of the plane-wave multipole transi-
tions. Some discrepancy in the dipole and non-dipole photoelectron energy spectra as
predicted by the Taylor and the Rayleigh approximations is shown using intense short
wavelength laser pulses interacting with hydrogen atom in its ground state. The discrep-
ancy arises from the higher-order multipole terms which are absent in the finite order
Taylor expansion series.

Most strong field theoretical studies have been concentrated on the spatially inde-
pendent dipole approximation to predict the interaction dynamics between matter and
radiation fields. However, there have been some previous efforts to incorporate the non-
dipole effects [12, 13, 87–93, 95, 96, 99, 100, 124] in the interaction dynamics. The
results of the work done incorporating the non-dipole effects have already predicted cer-
tain effects like total breakdown of the dipole approximation for hard x-rays [88, 89],
new structures in the photoelectron angular distribution, and a distortion of the dipole
photoelectron energy spectra for the XUV and soft x-ray wavelengths with intensities
greater than unity (in atomic units) [90, 92], a small distortion of the dipolar angular
distribution for very small wavelengths and intensities of ∼ 1 a.u. [93], and even a break-
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down of stabilization for intense high frequency laser pulses[13]. From a theoretical point
of view, the contribution of the non-dipole effects arising from the A2 term relative to
the A · p term in the strong-field regime has been a subject of contradicting viewpoints
[90–93, 95, 96, 124].

Although diverse theoretical approaches have been used to analyze these strong-field
effects, one of the ingredients that has apparently been employed in common is the use
of the Taylor approximation of the spatial phase retardation term, eik·r, to include the
non-dipole effects[18]. But in the plane-wave description of electromagnetic radiation,
despite being usual, it is not necessary to expand the electric field in a Taylor series [125].
The expansion of electromagnetic plane waves in terms of Bessel functions and spherical
harmonics dates back to theoretical works of the 1930s [126, 127] and this expansion in
twisted beams allows a very direct connection to be made between the angular momen-
tum of the photon and the terms of the expansion. The multipole expansion of the plane
wave spatial phase retardation term as a function of the spherical Bessel functions and
spherical harmonics in itself is credited to the very old works of Lord Rayleigh.

In this chapter, as already briefly introduced, the expansion of the plane-wave spatial
phase retardation term using the Rayleigh approximation series employing the regular
spherical Bessel functions (SBA) [103] and using the Taylor series approximations (TA)
is done. The strategy involves rewriting the Taylor expanded terms of the retardation as
a function of the Legendre polynomials. From the coefficients of these Legendre polyno-
mials, unique analytical functions which are correlated with each of the regular spherical
Bessel functions jl(x) are obtained. These unique analytical functions are referenced as
the Taylor approximated spherical Bessel functions, j̃l(x). The Taylor-approximated
spherical Bessel functions are then used alongside the regular spherical Bessel functions
to model the retardation term. The effects of the two alternative expansion methods
in the photoelectron energy (PE) spectrum of a strongly-driven hydrogen atom are fur-
ther analyzed. The interactions are considered up to the hexadecapole terms of the
interaction Hamiltonian, that is, from the 0th order up to the 3rd order terms in the
nomenclature of Taylor multipole expansion of the plane-wave phase retardation term.
A comparison is then made between the Taylor-plane wave multipole expansion series
and their corresponding orders of interaction in the Rayleigh plane-wave multipole ex-
pansion series. In this section, only the A · p terms of the interaction Hamiltonian is
focussed on. A comprehensive treatment of the non-dipole interaction terms including
the effects of both the A ·p and A ·A induced transitions is considered in the subsequent
sections.

4.1 Taylor-approximated Spherical Bessel Functions

The non-relativistic dynamics of atoms interacting with a classical electromagnetic field
is governed by the time-dependent Schrödinger equation

i
∂Ψ(r, t)

∂t
= [H0 + V(t)]Ψ(r, t) (4.1)
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4.1 Taylor-approximated Spherical Bessel Functions

where H0 is the unperturbed Hamiltonian corresponding to the field-free atom, V(t) is
the radiation-gauge interaction potential expressed in terms of the momentum operator
p and the vector potential A(r, t) as

V(t) = −qA · p +
1

2
q2A2 (4.2)

The vector potential A(r, t) satisfies the Coulomb-gauge condition, ∇ · A = 0. In all
the cases discussed in this work, a linearly polarised pulse is considered with the vector
potential

A(r, t) ≈ A0 f(t) sin(k · r − ωt+ δ) ẑ (4.3)

in the +z direction and the wave vector k oriented in the +x direction. Here, A0 = E0/ω
is the amplitude of the vector potential, E0 is the peak electric field strength, ω defines
the laser frequency, f(t) describes the laser pulse carrier envelope with δ as the carrier
envelope phase shift. The spatial dependence of the carrier envelope function f(t) is
assumed to be ignorable for the sake of mathematical convenience. The envelope itself
may be chosen as a cos2, Gaussian, or any other pulse-shape. The cos2 pulse shape is
used entirely in this study, although the other pulse-shapes implementations also exist
in the code. The cos2 pulse is periodic and only non-zero when the time t is enclosed
within the set (0, τ) with τ = (2πN/ω) as the total pulse duration for a laser pulse
containing N cycles. This expression for the vector potential can be expanded as

A(r, t) ≈ A0 f(t) [sin(k · r) cos(ωt) − cos(k · r)sin(ωt)] ẑ (4.4)

with the phase δ = 0 chosen for the sake of convenience. The spatial components can
then be expressed in terms of the spatial phase-retardation term eik·r and its conjugate
as

cos(k · r) =
1

2
[eik·r + e−ik·r]

sin(k · r) =
1

2i
[eik·r − e−ik·r]

(4.5)

The spatial phase retardation term can be expanded in Taylor series

eik·r = 1 + (ik · r) +
(ik · r)2

2!
+ · · · +

(ik · r)l

l!
(4.6)

or equivalently in terms of the well known Rayleigh plane-wave multipole expansion
using the regular spherical Bessel functions jl and the spherical harmonics Y m

l [19, 20]

eik·r = 4π
∞
∑

l

+l
∑

m=−l

il jl(kr)Y
m∗

l (k̂)Y m
l (r̂) (4.7)

with the order of the multipole expansion defined by l = 0, 1, 2, 3, · · · as the dipole,
quadrupole, octupole, hexadecapole, and other higher order multipole terms in case of
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4 Taylor versus Rayleigh Plane-wave Expansion

the Taylor series expansion. An equivalent representation of the plane-wave in the vector
spherical harmonics also exists[126].

To compare the two expansions, we consider only the first six terms of the Taylor
series expansion,

eik·r = 1 + ikr cos θ − k2r2 cos2 θ

2
− i

k3r3 cos3 θ

6

+
k4r4 cos4 θ

24
+ i

k5r5 cos5 θ

120

(4.8)

and express them as a function of the Legendre polynomials Pl(cos θ) of order l [128]

eik·r =P0(cos θ) + ikrP1(cos θ)

− k2r2

6
[P0(cos θ) + 2P2(cos θ)]

− ik3r3

30
[3P1(cos θ) + 2P3(cos θ)]

+
k4r4

24 × 35
[7P0(cos θ) + 20P2(cos θ) + 8P4(cos θ)]

+
ik5r5

120 × 63
[27P1(cos θ) + 28P3(cos θ) + 8P5(cos θ)]

(4.9)

in order to take a similar form as equation (4.7) to allow for a direct comparison. By
arranging the terms in the orders of the Legendre polynomials, the retardation term can
then be written as

eik·r =
∑

l

il hl(kr)Pl(cos θ) (4.10)

where

hl(kr) =
(kr)l

al
− (kr)l+2

2al(2l + 3)
+

(kr)l+4

8al(2l + 3)(2l + 5)
+ · · · (4.11)

is a polynomial in kr. The l-dependent term al is defined recursively by the relation
al+1 = (2l + 1) al, with a0 = 1 being the first term. Using these functions, the corre-
sponding Taylor-approximated spherical Bessel functions j̃l(kr) can then be constructed
using the partial-wave decomposition

j̃l(kr) =
1

2l + 1
hl(kr) (4.12)

The function al can be shown to be equal to (2l − 1)!!. If substituted in the equation
(4.12), one obtains the well known power series expansion of the regular spherical Bessel
functions [109, 110]

lim
nmax→∞

j̃
(lmax)
l (kr) = (kr)l

nmax
∑

n=0

(−1)n (kr)2n

2n n! (2n+ 2l + 1)!!
(4.13)
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4.1 Taylor-approximated Spherical Bessel Functions

where the integer n is a summation index, l denotes the order of the spherical Bessel
functions, and nmax is the maximum value of the summation index. If only a finite num-
ber of terms are used in the series, then the value of nmax depends on the maximum order
lmax of the multipole expansion in equation (4.6). The Taylor approximated functions

j̃
(lmax)
l (kr) can then be used to express the retardation term eik·r in three dimensions

using spherical harmonics expansion as

eik·r ≈ 4π
∞
∑

l

+l
∑

m=−l

il j̃
(lmax)
l (kr)Y m∗

l (k̂)Y m
l (r̂) (4.14)

having made use of the known

+l
∑

m=−l

Y m∗
l (k̂)Y m

l (r̂) =
(2l + 1)Pl(cos(θ))

4π
(4.15)

spherical harmonics [20] relation in equation (4.10) with θ being the angle between the
vectors k and r and Pl as the lth order Legendre polynomial, This expansion is similar to
the Rayleigh plane-wave multipole expansion using the regular spherical Bessel functions
jl(kr) in equation (4.7) but different in the corresponding Taylor-approximated spherical

Bessel functions j̃(lmax)
l (kr). It may be of importance to note that the regular spherical

Bessel functions jl(kr) are related to the ordinary Bessel functions of the first kind
Jm(kr) [103] by

jl(kr) =

√

π

2kr
Jl+ 1

2
(kr) (4.16)

with m = l + 1/2 as the order of the ordinary Bessel function.
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Figure 4.1: Taylor approximated Bessel functions j̃
(lmax)
l (kr) (broken lines) in comparison

with the spherical Bessel functions jl(kr) (solid lines). Blue are 0th order, red are 1st order,
green are 2nd order, violet are 3rd order, cyan are the 4th order, and black are the 5th order.
The Taylor approximated spherical Bessel functions j̃

(lmax)
l (kr) are constructed from the (a)

nmax = 0 and (b) nmax = 2 degrees of approximation of the hl(kr) functions.
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In making a useful comparison between the two different approaches in simulating non-
linear dynamics, one can start by comparing directly the correlation between jl(kr) and

j̃
(lmax)
l (kr), and then subsequently compare the components of the spatial retardation

term by evaluating the trigonometric ratios cos(k · r) and sin(k · r) as

cos(k · r) =
∑

l=0,2,··· ,even

il j′l(kr) (2l + 1)Pl(cos(θ))

sin(k · r) =
∑

l=1,3,··· ,odd

il−1 j′l(kr) (2l + 1)Pl(cos(θ))
(4.17)

with j′l = jl for the regular spherical Bessel functions and j′l = j̃
(lmax)
l for the nth

max degree
of the Taylor-approximated spherical Bessel functions.

4.2 Approximation of the Spatial Retardation Terms

Figure 4.1 is a plot of the graphs of the first six of the Taylor-approximated spherical

Bessel functions, j̃(lmax)
l (kr), defined in equation (4.14), and their corresponding regular

spherical Bessel functions jl(kr). The difference between the two figures is that in figure
4.1 (a) the summation in equation(4.13) is truncated after the first term (nmax = 0)
while in figure 4.1 (b), the summation is truncated after three terms (nmax = 2) . While
both spherical Bessel functions are in excellent agreement in the limit kr → 0, certain
key differences exist. First, it can be seen that the regular spherical Bessel functions are

in general convergent towards a zero value as kr → ∞ whereas the functions j̃(lmax)
l (kr)

are divergent beyond a certain critical point in kr. This could already be an indication of
a possible breakdown in the Taylor approximation [129] of any given order beyond that
critical point in kr. Second, the Taylor-approximated spherical Bessel functions approach
the limit defined by regular spherical Bessels of comparable order as the degree (nmax)
of the approximation is increased. This basically means that when more higher-order
terms are used in the Taylor expansion, the agreement between the two approximations
become better and the validity regime of the Taylor approximation increases.

Figure 4.2 and 4.3 show the approximation of cos(k · r) and sin(k · r) respectively
using the regular spherical Bessel functions in comparison to those constructed from the
Taylor approximated spherical Bessel functions of up to (a) nmax = 0 degree and (b)
nmax = 2 degree of the expansion in equation (4.13). The angle between the vectors k

and r was arbitrarily chosen and here only the case where the angle is π/4 radians are
reported. In the figure legends the functions

SBAN (kr) =
N≤lmax
∑

l=even, odd, or both

il
′
αl(r, t) jl(kr) (2l + 1) Pl(cos(θ))

TA(lmax)
N (kr) =

N≤lmax
∑

l=even, odd, or both

il
′
αl(r, t) j̃

(lmax)
l (kr) (2l + 1) Pl(cos(θ))

(4.18)
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are used to denote the order of approximation of the trigonometric ratios according to
equation (4.17), as well as the ionization probability distributions, and to distinguish
between the use of the regular spherical Bessel functions in Rayleigh (SBA) and the
Taylor approximated spherical Bessel functions in Taylor approximation (TA) series
respectively. In the approximation of cos(k · r) only even terms are added with l′ = l,
while for sin(k · r) only odd terms are in the summation with l′ = l − 1. Both even and
odd terms are used in the ionization probabilities calculations. The integer N defines the
upper limit in the summation and it is related to the order of spherical Bessel functions
used in the approximation by l ≤ N . In the example cases discussed in this chapter,
TAN and SBAN also specify the inclusion of matrix element evaluated up to a particular
order and in this case all the contributions, regardless of even or odd, would be part
of this sum. The value of the factor αl in equation (4.18) is unity when approximating
the trigonometric functions but for the ionization probabilities, it is determined by the
laser as well as the system parameters making it quite complex. The degree nmax of the

Taylor approximated spherical Bessel functions (j̃(lmax)
l ) refers to the number of terms

included in the Taylor approximated series of the spherical Bessel function of order l
and it is defined in terms of the maximum order lmax by nmax = tr{(lmax − l)/2} with
nmax taking only truncated integral values. In the Taylor approximated spherical Bessel
functions, the degree varies with l and lmax as already shown in the relation.
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Figure 4.2: The approximation of the function y = cos(k · r) for the first six orders of the
multipole expansion using the Taylor-approximated spherical Bessel functions in TAN and
the regular spherical Bessel functions expansion in SBAN . Blue curve is the correct cosine
function, while red, green, and violet are the 0th, 2nd, and 4th multipole-order approxima-
tions, respectively. The solid lines are the regular spherical Bessel function approximation
while broken lines are the corresponding Taylor approximated spherical Bessel functions, with
nmax = 0 degree is used in (a) and nmax = 2 degree in (b) respectively.

From figures 4.2 and 4.3, it can also be seen that both Taylor and Rayleigh approx-
imations of the trigonometric functions agree in the limit kr → 0 and lower orders of
the multipole expansion are sufficient for convergence in that regime. At large kr, the
Rayleigh expansion series, using the regular spherical Bessel functions, seem to be a
better approximation for the trigonometric functions. The Taylor approximation would
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match the Rayleigh approximation only when higher degrees (nmax) is used.
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Figure 4.3: Same as figure 3 but for the function y = sin(k · r) with blue curve as the correct
sine function and red, green, and violet as the 1st, 3rd, and 5th multipole-order approximations
respectively.

This confirms further that the validity regime of the Taylor approximation increases
with the order of the summation and in the infinite limit, it can only match the cor-
responding orders of the regular spherical Bessel functions. In figure 4.4, the stringent
validity condition, cos2(k · r) + sin2(k · r) = 1 , that needs to be satisfied by the various
orders of the approximations, is plotted. The condition helps to visualize the range
of validity of the various orders of the approximation. The inclusion of higher order
terms in both expansions series, as is expected, improves the satisfaction of the validity
condition leading to a better approximation of the retardation.

On a one-to-one comparison, it is evident from figure 4.4 that both series approxima-
tion of the plane-wave yield comparable validity range for lower orders of the multipole
expansion. At higher orders, the Rayleigh series performs better in comparison to the
Taylor series approximation of the same order. At multipole orders l ≤ 1, the gain in the
efficiency of the Rayleigh series seems not to be significant but from the 2nd multipole
order onwards, the gain is obvious. As kr increases, both fail with the Rayleigh series
under-approximating the functions whereas the Taylor series over-approximating. It can
also be seen that the Taylor series are likely to break down at some point. In cases of
such breakdown, their use would cause numerical convergence issues resulting in very
long durations of computation. It is important to note that even though the usual dipole
approximation where cos(k · r) is approximated by unity is quite basic, it satisfies fully
the validity condition. This makes it quite stable against any breakdown in comparison
to other orders of the Taylor approximation although its inherent inaccuracies remain
embedded in the photoelectron energy spectrum or the photoelectron angular distribu-
tion. The critical point at which the higher order Taylor expansion series are likely
to break down is expected to be conspicously manifested in the photoelectron energy
resolved probability distribution. The breakdown of such perturbative methods is well
known and has been discussed in non-linear dynamics [129].
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Figure 4.4: Validity constraint function y = cos2(k · r) + sin2(k · r). nmax = 2 degree Taylor-
approximated spherical Bessel functions are used. Blue is the correct condition while red,
green, and violet give the 1st, 3rd, and 5th multipole order approximations respectively.

In a real calculation, the box radius rmax together with the radiation wavelength λ
can be used to approximate the multipole order required for the results to be valid. As a
rule of thumb, it is always required that the radius of the box be at least three times the
radiation wavelength to avoid spurious reflections [14]. This therefore means that the
product 2π rmax/λ can be used to estimate the required number of multipole orders using
figure 4.4 for better convergence of the calculated observables. However, the convergence
usually depends on many other parameters, like intensity of the radiation, and therefore
the appropriate multipole orders should also be checked separately by convergence tests.

4.3 Multipole A · p Interactions Photoelectron Spectra

In this section, a comparison is made between the Raleigh and the Taylor series ex-
pansions in a strong-field calculation of the multiphoton above threshold ionization of
a hydrogen atom initially in its ground state irradiated by super-intense free-electron
x-ray laser fields. A radiation wavelength of 9.11 nm and the field intensity of 50 a.u.
consistent with the parameters of reference [92] is chosen. In the calculations, the first
four orders (N = 3) of the multipole expansion in A · p transitions only is implemented
using both Taylor and Rayleigh plane-wave expansion series. The goal was to clearly
see the disparity, arising from the different approaches, in the multipole photoelectron
energy spectra without incorporating too many interactions and also to compare the
computational advantages between them.

Figure 4.5 shows the photoelectron energy spectrum evaluated using both the Rayleigh
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and the Taylor multipole expansions for transitions from 0th order of up to the 3rd order
interactions in the A · p transition matrix elements as defined in equations (4.2) and
(4.18). In the calculations, a peak electric field strength of 50 a.u. and a pulse duration
of 10 optical cycles is considered. The numerical parameters include: Lmax = Mmax = 5,
Box radius = 200 a.u., B splines = 600, velocity gauge, cut-off energy = 20 a.u., tolerance
= 10−10, and a fully implicit time propagation scheme. In evaluating the transition
matrix elements for this figure, the Taylor expansion of the first four terms of the plane
wave retardation term from which the Taylor approximated spherical Bessel functions

j̃
(3)
0 (kr), j̃(3)

1 (kr), j̃(3)
2 (kr), and j̃

(3)
3 (kr) in equation (4.13) is derived, and from which

the N th order Taylor-approximated (TA(lmax)
N ) spectra as expressed in equation (4.18)

are drawn. These are then compared with the corresponding orders of the Rayleigh
multipole (SBAN ) expansion.
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Figure 4.5: Photoelectron energy spectrum of multiphoton ionization of a hydrogen atom
using a 9.11 nm radiation field with a peak electric field amplitude of E0 = 50 a.u. correspond-
ing to an intensity of 8.77 × 1019 Wcm−2 and the Reiss intensity scaling parameter z = 4.9956.
Solid lines correspond to the Taylor (TA

(lmax)
N ) series: TA

(3)
0 (black), TA

(3)
1 (blue), and TA

(3)
2

(dark green). Broken lines correspond to the Rayleigh (SBAN ) series : SBA0 (red), SBA1

(orange), and SBA2 (violet). Inset: The relative deviation with respect to the preceding lower
multipole-order.

Beginning with the N = 0 order spectra, one sees clearly distinct multiphoton ATI
peak structure. The position of the peak corresponds to the number of photons ab-
sorbed with the first multiphoton located at about 5 a.u. The separation between the
multiphoton peaks is equivalent to a single-photon energy. The low-energy structure
(LES) below the 2 a.u. is a peak whose origin can be attributed to either tunnelling,
over-the-barrier tunnelling, or to a two-photon resonant Compton scattering process in
which one photon is absorbed by a Stark-shifted eigenstate followed by a one-photon
emission process. It therefore does not correspond to any of the multiphoton peaks.
Since the LES is enhanced by the peak electric field strength, the over-the-barrier tun-
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nelling effect seems to be a more appropriate explanation for the near-threshold peak.
The higher multipole-orders (N > 0) can be seen to introduce a destructive interference
to the observed ATI peak structure with more significant effects at higher photoelectron
energies. The distortion of the ATI structures are similar to the observations in the
literature data [92] although they evaluated the TDSE in momentum-space where as
position-space is used in this work.

It is evident that for the photoelectron energy window specified in figure 4.5, the
second-order multipole terms (TA2 and SBA2) are already sufficient for perfect conver-

gence. The comparison between TA(lmax)
N and SBAN spectra can be seen to be very

good for the chosen level of Taylor expansion. However, when lmax < 3 is used as the
maximum order of the Taylor expansion (figure not shown for the sake of clarity), it is
realized that the agreement between the two approaches for the same laser and numer-
ical parameters is not very good except for the dipole approximation. This means that
higher orders of the Taylor expansion are necessary to obtain a very good agreement
with the Rayleigh plane-wave multipole expansion as already shown in the mathemati-
cal analysis in section 4.1. The caption in figure 4.5 includes the Reiss intensity scaling
parameter which shows the ratio of the ponderomotive energy to the photon energy and
as a consequence, it measures the degree of applicability of the perturbation theory.

In general, it can be observed that non-dipole corrections may provide significant
disparities in the spectra depending on the method of expanding the retardation term.
The effect of including the 1st and the 2nd order A·p multipole terms as corrections to the
leading 0th order term already shows some significant modification of the ATI structures.
The side bands are apparently levelled out, the valleys disappear, and the multiphoton
peaks flattened by this partial inclusion of non-dipole effects. In the photoelectron energy
spectrum, it is observed that tiny higher multipole-order effects also manifest slightly
at very low photoelectron energies. As photoelectron energies increase, the disparity in
the spectra between various multipole-orders become more pronounced necessitating the
need for higher-order corrections to obtain convergence. The dominant non-dipole effects
can be attributed to the quadrupole transitions and the higher multipole-order terms
above the quadrupole only produce tiny modifications to the quadrupole effects. This is
further confirmed in figure 4.7 (left) showing relative deviations of the total ionization
yield from the lowest-order spectra with the biggest deviation emanating from the 1st

order correction.

The non-dipole effects are spread in the entire photoelectron energy spectrum and
the magnitude of these effects is observed to increase generally with the photoelectron
energy. The discrepancy between the methods of expanding the retardation is also
clearly visible. The objective of introducing the octupole and hexadecapole transitions
was to actually test convergence between the spectra by increasing the order of the
multipole expansion within the photoelectron energy regime displayed in figure 4.5. A
nearly perfect convergence between the TAN and SBAN expansions only in the N = 3
multipole-order approximation but the relative deviations in the differential ionization
probability shown in the inset of figure 4.5 and in the total ionization probability from
the zero order spectra shown in figure 4.7 (left) suggests that there always exist a tiny
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deviation between the corresponding TAN and SBAN orders in the total ionization
yield. The relative deviation was obtained by dividing the absolute difference between
two successive orders of the multipole yields by the lower order yield. This discrepancy
in the relative deviation accounts for the contributions of the higher multipole-order
terms which are not present in the corresponding Taylor expansion.

Figure 4.6 shows a similar comparison of the photoelectron spectrum at a much shorter
wavelength of 0.3 nm. The spectrum shows a series of side bands, which are signatures
of the dynamic Stark effect [130, 131], and three multi-photon resonance peaks are also
visible. The figure was generated using similar basis-set parameters as in figure 4.5
except that the number of B splines were increased to 5000 (for the left figure) in order
to reproduce reliable probabilities at higher photoelectron energies up to the specified
range. The inset in figure 4.6 (left) focusses on the lower energy regime where the
non-dipole effects are apparent. This regime is probed further in figure 4.6 (right) by
considering two additional multipole-orders and zooming into the differences as presented
in the inset.
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Figure 4.6: Left: Same as figure 4.5 but for a 0.3 nm wavelength and Reiss intensity scal-
ing parameter z = 1.784 × 10−4. Inset: Lower photoelectron energy regime showing some
dicrepancy between the TA

(1)
N and SBAN approximations and the manifestation of first-order

correction effects. Right: Zoom into the inset in the left figure and including the effect of
higher multipole-orders up to the order TA

(3)
3 (cyan) and SBA3 (light green).

The discrepancy between the TAN and SBAN spectra are more pronounced for the
lowest-order corrections and also at lower photoelectron energies for this wavelength.
The deviations from the dominant 0th order (TA0 and SBA0) terms manifesting at
the lower photoelectron energies are supported by both approaches even though the
estimated magnitude differs. At highest photoelectron energies, there appears to be
some slight spatial effect in SBA1 prediction but the TA1 predicted non-dipole effect
is quite huge. Considering that the Rayleigh plane-wave multipole expansion series
give the expected contribution from a mathematical perspective, one can argue that
the non-dipole structure observed at the higher end of photoelectron energies when
Taylor expansion is used seems to be more of an artefact. This reasoning is quite logical
based on the fact that Taylor expansion is valid only when 2πr/λ ≪ 1. For 0.3 nm,
2πr/λ ∼ 1 which definitely does not satisfy the validity requirement. This potentially
suggests that the Taylor approximation breaks down at this wavelength and its use may
yield unreliable results. The inset of figure 4.6 (left) zooms into the low-energy window
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showing some non-dipole effects. The energy range shown is within the single-photon
ionization regime. The deviation between the TAN and SBAN expansions is probed
further by considering the contribution of higher multipole-order terms in the lower
photoelectron energy regime where the difference is larger.

Figure 4.6 (right) shows the spectra evaluated up to the 3rd multipole-order for the
energy regimes shown in the inset of figure 4.6 (left). Although the intensity and wave-
length of the radiation used can qualify the interactions to be classified under the dipole
oasis [132] by the scaling laws, it is surprising that the effects of the additional higher
multipole-order terms are quite significant in the lower photoelectron energy regime dis-
played. In the figure, the discrepancy between TAN and SBAN at very low photoelectron
energies persists despite the involvement of many orders of the multipole expansion. This
shows that several higher multipole-order terms may make a significant contribution in
the near-threshold photoelectron energy regime, and many more of the higher-order
terms are necessary for perfect agreement between the Taylor and the Rayleigh series

approximated spectra. In figure 4.6 (right), a small bending in the TA0 and TA(3)
1 spectra

in the near-threshold region is noticeable because of the Taylor approximated spherical

Bessel function (j̃(3)
0 and j̃

(3)
1 ) used incorporates the nmax = 1 degree correction. This

makes the Taylor approximated spectra to be slightly like the regular spherical Bessel
functions generated spectra in the Rayleigh plane-wave multipole series expansion.
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Figure 4.7: Left: Total ionization probability and relative deviation (inset) of the ionization
yield with respect to the lowest-order terms. Right: Computational run-time as a function
of the multipole order of the retardation expansions in Taylor or in spherical Bessel function
series. The numerical and laser parameters are similar to those used in figure 4.5 (right).

From the observations, there appears to be some numerical gain with the use of the
Rayleigh plane-wave expansion series as compared to the Taylor series not only in ac-
curacy but also in terms of the computational run-time for the time propagation. The
computation run time of 9.11 nm wavelength laser pulse interaction calculated for up to
N th order approximation in Taylor and spherical Bessel functions respectively consistent
with the numerical parameters used in the calculations of figure 4.5 is illustrated in figure
4.7 (right). In the beyond-the-dipole approximation, the computational run-time shows
a logarithmic time dependence as the multipole-orders increase. It can be seen that the
SBAN calculations are more efficient in time. The gain in time when SBAN is used is
observed to be even more significant for shorter wavelengths (∼ 0.3 nm and below) at

85



4 Taylor versus Rayleigh Plane-wave Expansion

higher radiation intensities.
From the mathematical relationship between the Taylor and the Rayleigh expansions

of the spatial retardation term shown in this chapter, one can conclude that the Rayleigh
plane-wave multipole expansion provides the ideal contribution of any given order of
the multipole terms of the interaction Hamiltonian. In the example calculations of the
ionization probability distributions, it has been shown that the 0th multipole-order terms
of the interaction compare very well in both Taylor and Rayleigh expansion series. That
essentially means that the dipole approximation would be justified when the importance
of the non-dipole corrections is not necessary. When non-dipole effects are of interest, the
discrepancy manifesting between the TAN and SBAN expansions show that both have
slight differences in accuracy for the corresponding orders when used in the evaluation
of quantum observables. For the cases considered in this study, the discrepancy between
the two expansion methods accounts for the role of higher multipole-order terms which
are not present in the Taylor expansion.

For very short wavelengths and very low photoelectron energies, the structure of the
photoelectron distibution spectrum varies slightly depending on the method of expansion
employed signifying that the inclusion of many higher-order non-dipole effects may be
crucial to predict correctly the photoelectron spectrum in the lower-energy regime for
extremely short wavelengths. It may be important to note that the validity condition
of Taylor approximations requiring the correction terms to be of the order 2πr/λ ≪ 1
fails in the very short wavelength domain. This could explain the reason why the Taylor
corrections are badly behaved in the case of 0.3 nm shown in figure 4.6 as compared
to the case of 9.11 nm shown in figure 4.5. Using the Rayleigh plane-wave multipole
series expansion is observed to be practically more efficient in terms of the computational
time and the accuracy desired for any given multipole-order of the interaction, with the
assumption that the other numerical convergence parameters are sufficient.

Chapter Summary

In summary, the multipole expansion of the spatial retardation term eik·r is compared
using both Taylor and Rayleigh plane-wave expansion series approximations in this chap-
ter. The Rayleigh plane-wave expansion series, which make use of the regular spherical
Bessel functions, are found to a better approximation of the spatial retardation term
than the Taylor series when a finite number of multipole orders is considered. Moreover,

the Taylor approximated spherical Bessel functions j̃(lmax)
l (kr) are shown to converge to

the regular spherical Bessel functions in the limit kr → 0 although at large kr values
there are larger deviations between the regular and the approximated spherical Bessel
functions leading to a possible divergence between the two methods of approximating
the plane-wave. Using a larger nmax in the summation series of the Taylor-approximated

spherical Bessel functions j̃(lmax)
l (kr) as defined in equation (4.13) reduce their disparity

with the corresponding orders of the Rayleigh plane-wave expansion series.
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5 Spatial Correlation Effects in the
Lowest-order Interaction Potential Terms

The comparison between Taylor and Rayleigh plane-wave expansion in multipole-order
terms is already discussed in chapter 4. In the lowest-order terms of the expansion,
the Taylor expansion yields the conventional dipole approximation where the spatial
dependence of the vector potential describing the interaction between the photon and
the active electron in the system is lost. On the other hand, the Rayleigh expansion
introduces the spatial variation of the vector potential even in the lowest-order term of
the expansion. In this chapter, the effect of the spatial dependence of the lowest-order
term of the vector potential in the Rayleigh plane-wave expansion is investigated. The
dipole approximation is expected to be valid if the radiation intensity is low or if the
radiation wavelength is longer.

The discussions in this chapter is supposed to be helpful as a preliminary check for
the relativistic effects in the strong-field processes in an economical sense. The presence
of the relativistic effects can also be a good indicator of the potential radiation pressure
effects not testable by the lowest-order term of the plane-wave multipole expansion.
The motivation for this chapter is based on the fact that the current generation light
sources have made it possible to produce intense laser pulses with short duration and
tunable wavelengths which characterise light-matter interactions to be in the strong-
field regime. In the strong-field regimes, the validity of the dipole approximation is
questionable. Also, the ponderomotive potential (Up) associated with such strong-fields
scales with intensity and wavelength making it comparable to or even dominant over the
Coulombic interactions.

In the radiation gauge picture, the Up shifts the ionization potential and energy levels
of the system interacting with the radiation [61]. The length-gauge picture on the other
hand explains the effect of the Up in terms of the Stark shifts of the field-free states of
a system dressed by the radiation field. The consideration of the Up has led to a great
success in the understanding of various strong-field features like tunneling ionization and
multiphoton ionization [34], barrier-suppression ionization [2], channel closing [55, 133–
135] in above threshold ionization (ATI) , atomic stabilization [78, 136], higher-order
harmonic generation (HHG) [9, 81] in atomic and molecular physics, and the radiation
pressure [85].

This study would therefore give some insight into the intensity limits at which non-
dipole corrections may become important while utilizing the cylindrical symmetry ap-
plicable in the dipole approximation, in the cases where an atomic system interacts with
a pulse which is linearly polarized in the z direction. It is indeed found that at higher
strong-field intensities, beyond the perturbative regime, a photoelectron spectrum and
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ionization yields results without an explicit inclusion of a spatially resolved A ·p and A2

interactions may not be valid. The cylindrical symmetry makes it possible for one to use
a basis set resolved in n and l quantum numbers only leading to a better optimization of
the computational resources. The possibility of extracting the spatial correlation effects
due to intense long-wavelength radiation interactions where a full numerical solution of
the multipole TDSE would be quite demanding, because of the large box radius require-
ments and the broken cylindrical symmetry, is an additional benefit derived from the
lowest-order term of the Rayleigh plane-wave multipole-order expansion.

In the beyond-the-dipole approximation, the spatial corrections by the higher
multipole-order terms with the dipole selection rules in the Taylor plane-wave expansion
series may be introduced. These are the correction terms brought into play by the 0th

order term of the Rayleigh plane-wave expansion. These terms have an explicit spatial
dependence and therefore the contribution of the A2 term can not be ignored on the
basis of a phase transformation in this framework. The additional advantage offered by
the Rayleigh plane-wave expansion is the ability to incorporate some of the effects of the
higher-order correction terms using the cylindrical symmetry.

A 10-cycle 800 nm light pulse, usually generated by the Titanium-Sapphire laser
source, with intensities ranging from 1.0 × 1013 Wcm−2 to 5.0 × 1016 Wcm−2 is used
in the numerical calculations. The hydrogen atoms in their ground or 10f states have
been selected as a system of choice as it presents a simple system where the influence
of the electron correlation effects are absent. The interaction dynamics of the ground
(1s) state and the 10f Rydberg states of the atom with intense linearly polarized laser
pulses is considered particularly because of their relative differences in the ionization
potential, and consequently their Keldysh adiabaticity parameters. These differences
make the systems appealing to study since, for the same laser parameters, the two ini-
tial states may classify the interactions to correspond to different processes based on
the Keldysh classification scheme. For example, at an intensity of 1.0 × 1014 Wcm−2

the interaction of the radiation with the ground state would be classified to be in the
multiphoton regime while for the Rydberg state, it would be deep in the tunnelling or
over-the-barrier ionization regime.

The relative contribution of the lowest-order spatial corrections have been analyzed
in this chapter. The spatial effect on the A · p interaction is analyzed first and then the
effect of the A2 term is considered next. The relative deviation is calculated with respect
to the dipole approximation spectrum, that is, the absolute deviation from the dipole
approximation yield divided by the dipole approximation yield. The numerical solution
uses a spectral expansion method employing B splines with a mixed knot sequence,
that is, a non-linear geometric sequence from 0 up to 40 a.u. and thereafter, a linear
sequence. Reasonable convergence is obtained using a box radius rmax = 2000, 4000 B
splines, a basis size of L = 50, and a photoelectron cut-off energy of 3 a.u. for intensities
up to ∼ 1.0 × 1016 Wcm−2. These convergence parameters, unless otherwise specified,
are used for all the intensities considered in the calculations in this chapter.
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5.1 Spatial Effect in the Lowest-Order A · p Interaction Term

Figure 5.1 shows a comparison of a photoelectron spectrum for the A · p interaction
only generated using the lowest-order terms for the different intensities of a short Ti:Sa
laser field. In this figure and throughout this chapter, SBA0 refers to the 0th-order terms
in the Rayleigh plane-wave expansion series defined by the first two terms in equation
(3.173) and TA0 refers to the 0th-order Taylor plane-wave expansion series defined as
the first term of equation (3.172).
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Figure 5.1: PE spectrum for a 10 cycle 800 nm wavelength multiphoton ionization of hydrogen
atom in its (a-d) ground and (e-h) 10f state corresponding to the intensities 1.0×1013 Wcm−2,
1.0 × 1014 Wcm−2, 1.0 × 1015 Wcm−2,and 1.0 × 1016 Wcm−2: SBA0 (A · p only, Red dashed
lines), TA0 (the dipole approximation, green solid lines). The relative deviation of SBA0 with
respect to A0 (magenta long dash lines) in equivalent units to the left vertical scale.

In this chapter, TA0 is equivalent to the standard dipole approximation where the
spatial retardation term is approximated by unity. On the other hand, the lowest-order
Rayleigh plane-wave expansion using the spherical Bessel functions (SBA0) gives the
spatial modification to the dipole approximation. The respective Keldysh adiabaticity
parameters γ which characterise the regime of various strong field processes by comparing
the ponderomotive potential and the ionization potential are also specified in the figures.

The energy resolved differential probabilities of the two approaches as well as a relative
deviation between them are shown. The SBA0 results can be used as the absolute
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theoretical limit for the transitions with the dipole selection rules in the regions where
the spectra is considered converged. The ATI structures are clearly separated in the
1s state up to an intensity of order ∼ 1.0 × 1015 Wcm−2. In the 10f state, the ATI
structures are well resolved up to the intensities of order ∼ 1.0 × 1014 Wcm−2. For the
Rydberg state, the differential probabilities decay like the static field ionization rates at
intensities above ∼ 1.0 × 1015 Wcm−2.

Significant spatial corrections effects are observable in the spectra. The magnitude
of the spatial effects increase with the radiation intensity, the photoelectron energy,
and to some extent with a decrease in the ionization potential of the system. The
relative deviations are highly oscillatory showing that the contributions seem to only
modify the spectra in the regions where the dipole-approximation interactions are weak.
The relative deviation on the 1s and the 10f states do not compare one-to-one, but
comparable wiggles in the spectrum can be seen in figure 5.1 (d) and 5.1 (f), having the
same Keldysh parameter but different intensities. A similar observation in the spectrum
is also evident in figure 5.1 (c) and 5.1 (e). For the 1s state, the spatial effects become
visible in the PE spectrum at the intensities of order ∼ 1.0 × 1016 Wcm−2 where as for
the 10f state, the effects become visible at the intensities of order ∼ 1.0 × 1014 Wcm−2.

5.2 Spatial Effect in the Lowest-Order A2 interaction Term

Within the minimal coupling formalism, the light-matter interaction has been adequately
described by the dipole approximation which ignores the contribution of A2 term since
it is taken to be spatially independent and therefore contributes a zero force in the inter-
action dynamics. The treatment is well justified within the dipole approximation since
the effect of a fully time-dependent A2 term can be removed by a simple transformation
reducing its effect to a mere phase shift of the transition amplitude. In that case, the
ionization probability would be insensitive to whether or not the coupling moments of
the A2 terms are included [137, 138]. However, Ivanov and Kheifets [139] note that the
use of a Hamiltonian without the A2 term contribution alters interpretation of the shift,
which both continuum threshold and bound states undergo in the presence of electro-
magnetic field. Reiss, on this argument, adds that physical descriptions like channel
closing are altered when A2 term is removed by a gauge transformation [135].

In this section, the effect of the spatial variation of the vector potential in the lowest-
order A2 term is investigated using the Rayleigh plane-wave multipole expansion. The
dipole approximation results are also provided for comparison purposes. In this case,
the spatially dependent lowest-order A2 term is explicitly included in the interaction
Hamiltonian and the resulting non-relativistic Schrödinger equation is solved in three
dimensions using the radiation gauge interaction potential. The use of the spatially
varying lowest-order A2 term has an added advantage of bringing into play the otherwise
forbidden same symmetry transitions (for example, (1s− 2s) transitions) as corrections
to the dipole approximation.

Figure 5.2 shows the effect of the inclusion of the lowest-order A2 interaction term on
the photoelectron energy spectra for the hydrogen atom in its ground and 10f Rydberg
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states and for the same laser parameters as in figure 5.1. The use of SBA0 allows for
additional transitions due to the the A2 interaction term which are otherwise forbidden
within the dipole approximation.
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Figure 5.2: Same as figure (5.1) but with the SBA0 including both A · p and A2 terms (blue
dash dot lines).

The relative deviation from the dipole approximation in this case is comparable to
the cases discussed in section 5.1 in which the A2 interaction term is not included.
This effectively means that the additional effects that come into play with the spatial
consideration of the two interaction terms are of the comparable order in the strong-
field regime. The terms should therefore be considered together especially in the deep
tunnelling regime where significant effects in the spectrum become visible. The relative
change in the deviations between figures 5.1 (d) and 5.2 (d) is explicitly visible and it
can be attributed to be a consequence of the lowest-order A2 term only. But for the
other corresponding figures, it is quite difficult to isolate the additional effects of the
lowest-order A2 term only.

The peak spatial modulation can be up to ∼ 1 percent of the ionization probability for
intensities less than 1.0 × 1015 Wcm−2 and up to ∼ 10 percent for intensities of the order
∼ 1016 Wcm−2 in the photoelectron energy regime capable of contributing significantly
to the total ionization yield. The relative change in the total ionization yield is discussed
later in section 5.4. Generally, it can be observed that the relative spatial contributions
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are rather comparable for both the ground and the excited Rydberg state and for both
terms of the interaction potential.

In figure (5.3), the additional effect of the lowest-order A2 term only is investigated
by obtaining the relative deviation as a ratio of the absolute difference between the
SBA0 (A · p) and SBA0 (A · p + A2) probabilities, and the dipole approximation (TA0)
differential probabilities. The relative deviation in this case can be used as a measure
of the relative importance of the spatial variation of the lowest-order A2 term only with
respect to the dipole approximation. Just like in the other figures, it can be seen that
the importance of this term increases with intensity, photoelectron energy, and decrease
in the ionization potential. At the intensity of the 1.0 × 1016 Wcm−2, one can easily
see that contributes a probability of ∼ 10% of the dipole approximation value in the
1s state but in the 10f state, the contribution can be up to ∼ 100%. Bearing in mind
that the effects discussed in this chapter are actually relativistic corrections, one may
conclude that at the ponderomotive pressure effects are likely to show up at relatively
lower intensities.
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Figure 5.3: Same as figure (5.1) but comparing SBA0 (A · p, red dashed lines) and SBA0

(A · p + A2, blue dash dot lines). The relative deviation is the absolute difference divided by
the TA0 differential probabilities.

The peak relative effect of this interaction appears to be slowly varying for the excited
Rydberg state while it increases at a higher rate with the photoelectron energy for the
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5.2 Spatial Effect in the Lowest-Order A2 interaction Term

ground state for all the intensities considered. It is important to note that the modifica-
tions in the spectra observed emanate from the spatial variation of A and are therefore
not observable if dipole approximation is employed in the calculations. The spatial mod-
ulation can be seen to be highly oscillatory in general. Figures 5.4 (a)-5.4 (c) and 5.4
(d)-5.4(f) focus on the photoelectron energies below 0.2 a.u. for the ground and 10f
states respectively for the laser intensity regimes where visible effects in the photoelec-
tron energy spectrum are expected. It can be seen that the (very) low-energy structures
[(V)LES] [73, 74, 140] and zero energy structures (ZES) [75] observed in recent exper-
iments are modified significantly at higher intensities by the inclusion of the spatially
resolved A2 interaction term. Significant enhancement of these low-energy structures is
observable for the ground state at an intensity of 2.0 × 1016 Wcm−2 showing that indeed
the relativistic effects could partly explain the origin of the (V)LES/ZES. It is noted
that structures similar to VLES (< 30 meV) had been observed in an earlier experiment
[141] but was suspected to be resulting from multiphoton ionization of impurities in the
interacting helium atoms.

The origin of these low-energy structures is still a subject of current debate with several
theoretical studies attributing the effect to soft recollisions modified by the interaction
of the outgoing electron with the ion’s Coulomb field [74, 77, 142] or multiple scattering
of the photoelectron in the Coulomb field of the parent ion [52].
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Figure 5.4: Same as figure (5.2) but for lower photoenergies up to 0.2 a.u..for the (a-c) ground
state and (d-f) 10f state respectively.

To the best of my knowledge, none of the previous studies have so far considered
explicitly a possibility of the low-energy structures being modified by the gradient force
due to a spatially resolved lowest-order A2 term. The laser-driven soft-recollisions pre-
diction of [142] illustrate the formation of the structures using non-Coulombic Gaussian
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5 Spatial Correlation Effects in the Lowest-order Interaction Potential Terms

potential which induces energy bunching for low-energy photoelectrons. The similarity
between the Gaussian potential described and the A2 kind of potential could be a hint
towards their prediction.

5.3 Spatial effects in the Long Wavelength Interactions

Repeat calculations done using a spatially independent A2 term verified as expected
that if the spatial dependence is ignored, the induced shifts in the dipole spectrum at all
the intensities investigated vanish. For consistency purposes, the radiation wavelength
has been varied to 3100 nm corresponding to mid-infrared wavelengths for which the
experimental evidence [75] for the very low-energy structures have been reported. Figures
5.5(a) -5.5(f) shows the numerical results obtained for an intensity of 1.0 × 1013Wcm−2,
1.0×1014 Wcm−2, and 1.0×1015 Wcm−2 for the longer wavelength laser pulses interacting
with the hydrogen atom in its ground state at a wider (left) and at a narrower (right)
photoelectron energy window. It is clear from figure 5.5 that the spatial effects are more
pronounced at relatively lower intensities compared to the 800 nm case. This means that
the spatial effects due to the A2 interaction term increase with the ponderomotive energy
which is significantly higher for such relatively low laser frequencies. The modification
of the low-energy photoelectron structures is clearly visible and grows with intensity.
Figures 5.4 (c) and 5.5 (f) having comparable Keldysh parameters, despite the difference
in intensities and wavelengths, show how large the low-energy structures can be modified
by the lowest-order A2 interaction term.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Photoelectron Energy (a.u.)

10
-9

10
-8

10
-7

10
-6

10
-3

10
-2

10
-1

d
P

/d
E

10
-1

10
0

TA
0
 (A.p)

SBA
0
(A.p)

SBA
0
(A.p + A.A)

(a)1.0 × 10
13

 Wcm
-2

; γ = 0.8707

(b)1.0 × 10
14

 Wcm
-2

; γ = 0.2753

(c) 1.0 × 10
15

 Wcm
-2

; γ = 0.0871

0 0.002 0.004 0.006 0.008 0.01
Photoelectron Energy (a.u.)

0

5

10

15

20

×
 1

0
-9

0.06

0.08

0.1

0.12

0.14

d
P

/d
E

0.8

1.2

1.6

2

(d)1.0 × 10
13

 Wcm
-2

; γ = 0.8707

(e)1.0 × 10
14

 Wcm
-2

; γ = 0.2753

(f) 1.0 × 10
15

 Wcm
-2

; γ = 0.0871

Figure 5.5: Photoelectron energy spectrum for a 3100 nm, 10 cycle, 1.0×1013, 1.0×1014 and
1.0 × 1015 Wcm−2 intense laser pulse interacting with a hydrogen atom in its ground state.
(a-c) Energy range up to 2 a.u. (d-f) lower energy regime from threshold up to 0.01 a.u. The
modification of the photoelectron spectrum by the A2 term is clearly visible.
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5.4 Lowest-Order Spatial Effects in the Total Yields

A possible explanation for the spatial modification of the low- and very low-energy
structures would be that the ionization potential of the ground state and low-energy
excited states are strongly modified as the magnitude of the A2 term increases with
intensity. This would lead new resonances with the highly excited Rydberg states which
were previously out of resonance. The resonant peaks corresponding to these Rydberg
states show up as the LES or VLES structures.

From a classical perspective, the A2 term introduces a dipole force resulting from
its spatial dependence. This dipole force pushes the electrons in the direction of laser
propagation thereby reducing the electron binding force along the propagation axis. Ad-
ditional electrons are likely to leak out along this line of weakness. The enhancement
of the low energy structures when the A2 term is incorporated can therefore be seen
as a consequence of over-the-barrier tunneling resulting from an additional shift in the
potential barrier and that explains their prominence at higher intensities. In the mul-
tiphoton regime where physical effects like above threshold ionization structures and
channel closing are observed, the explicit inclusion of the A2 term may lead to the
observed modification of the peak positions and amplitude.

5.4 Lowest-Order Spatial Effects in the Total Yields

The total ionization and excitation yields for a 10 cycle 800 nm laser pulse corresponding
to different intensities are presented in figure 5.6 (a) for the ground state and in figure
5.6 (b) for the excited 10f Rydberg state. The ground state excitation yields have been
multiplied by factor 10 to enhance their visibility in the graph. An numerical accuracy of
10−6 is used in the time propagation in all the calculations reported in this chapter. The
effect of the spatially dependent A2 term on the total ionization and excitation yields
appear to be at variance for both the ground and the Rydberg states. For the ground
state, it can be observed that at the highest intensities considered, the inclusion of the A2

term leads to a slight decrease in the ionization yields and a slight increase in excitation
yields. This could be interpreted to signify some slight stabilization effect for the ground-
state. On the other hand, there is some enhancement of the ionization probability of the
Rydberg state and some decline of the excitation yield at the corresponding intensities
where A2 term become important and thus the stability of this Rydberg state is reduced.

The relative change in the excitation and ionization yields if the A2 interaction term is
included suggests that this interaction classically varies the critical intensity at which the
Barrier-Suppression Ionization (BSI) [2, 71] comes into play. The stabilization [78, 143]
effect of neutral species at high intensities can be said to be partially a consequence
of the A2 term as predicted in figure 5.6. However, the observed effects on stability
of the ground and Rydberg states of hydrogen atom, may not be conclusive because
at high radiation intensities, the other higher-order non-dipole terms not considered in
this chapter become significant and their inclusion in the interaction Hamiltonian may
lead to a breakdown of the stabilization effects [13, 144]. Actually, the observed spatial
effects are relativistic in nature emanating predominantly from the octupole term of
the Taylor expansion. Other finer adjustments to this spatial correction originate from
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5 Spatial Correlation Effects in the Lowest-order Interaction Potential Terms

the even multipole order terms in the Taylor expansion series. If these spatial effects
become noticeable in the probability distributions, the quadrupole-order contributions,
not captured in this work because of the inherent non-cylindrical symmetry, may actually
be quite significant at much lower laser-field intensities as was already shown in a recent
experimental observation [132]. The intensity-wavelength thresholds where the non-
dipole effects manifest has been discussed by Reiss [85, 86]. The spatial effects observed
in this study fits within the lower-dipole limits highlighted [85].
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Figure 5.6: Intensity-dependent photoionization and photoexcitation yields corresponding to
the 800 nm 10-cycle laser pulses interacting with a hydrogen atom in (a) its ground state and
(b) in the 10f state. The symbols denote the data points and the continuous lines connect
these data points as a guide for the eye. The excitation probability in (a) have been multiplied
by factor 10 to increase visibility.

Chapter Summary

The effects of the spatial dependence of the A · p interaction on the photoelectron en-
ergy spectrum become visible not only with the increase of the photoelectron energy
and the radiation field intensity , but also with the decrease in the ionization threshold.
The spatial dependence of the ionization probabilities is quite non-linear. The aspect
definitely requires further investigation. The recently observed zero- or very low-energy
structures [73–75, 140] are seen to be enhanced by the inclusion of the spatially resolved
lowest-order approximation of the A2 interaction. These observations are confirmed
by repeating the ground state calculations with a 3100 nm wavelength laser pulse with
intensities of 1.0×1013 Wcm−2 , 1.0×1014 Wcm−2, and 1.0×1015 Wcm−2. An enhance-
ment of the ionization yield of the Rydberg state at radiation intensities of order ∼ 1016

Wcm−2 and above for the 800 nm radiation wavelength is also predicted.
At the intensities where the spatial effects are important, the effect of including spa-

tially resolved A·p and A2 interactions play a crucial role in the ionization and excitation
dynamics leading to shifts in the probability amplitudes. Classically, the dependence of
the A2 term on the spatial coordinates creates a radiation dipole force which increases
with intensity of radiation. This force modifies the Coulombic force in the direction of
the laser propagation leading to a change in the ionization and excitation dynamics.
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6 Non-dipole Effects in the Photoionization
of Hydrogen Atoms

In this chapter, the non-dipole effects in the ionization probabilities of hydrogen atoms
interacting with short intense laser pulses is discussed in relation to the their dependence
on intensity, wavelength, pulse duration, and the initial state. The focus is mainly on
the changes arising in the physical observables due to the higher multipole-order terms
of the interaction, in comparison with the observables evaluated using the lowest-order
terms of the interaction Hamiltonian. The physical observables considered are the energy
and angle resolved differential ionization probability distributions, total ionization and
excitation yields, as well as the non-dipole asymmetry parameter. The effects considered
specifically include the dependence of physical observables on the: intensity, wavelength,
pulse duration, and the initial state. For computational convenience and accuracy as
already discussed in chapter 4, the spatial retardation eik·r term is expressed in terms
of the Rayleigh plane-wave multipole expansion series in this chapter except in the
cases in which the ionization dependence on radiation wavelength is investigated or
where a further comparison between the Taylor and the Rayleigh expansions is made.
In the exceptional case, the implementation of the first-order correction of the spatial
retardation term in the Taylor plane-wave multipole expansion series is more convenient.

In solving the non-relativistic TDSE, the relative importance of the various beyond-
dipole terms of the interaction Hamiltonian in the strong-field regime is checked. The
importance of the various terms is a subject of current debate. In this debate, one group
associate the dominant corrections to be emanating from the A · p interaction terms
[92, 93, 96, 124] while the other group associate the dominant corrections to the A · A

interaction terms [12, 90, 91, 95, 98, 99]. The chapter begins with the consideration of
the beyond-dipole interactions from a classical perspective in order to give an insight into
the factors that quantify the magnitude of the non-dipole effects. The results obtained
by solving the TDSE numerically using an implicit variable Adamms time-propagation
routine are then presented and discussed.

Because of the recent developments in the current generation light sources which allows
the production of intense short wavelength short pulse lasers [8], this chapter focusses
on the beyond-the-dipole effects for such relatively short wavelength regime. For the
sake of comparison with available literature data [91], it has been found favourable to
work with a laser wavelength of 13 nm (ω = 3.5 a.u.) and peak electric field strength
ranging from 1 to 45 a.u. with finite pulse durations of 10 and 15 cycles. The non-
dipole effects corresponding to this wavelength have already been reported by Morten
Førre [91] for peak electric field strengths ranging from 1 to 60 a.u. for a 15 cycle
pulse. For completeness, the results for a fixed peak electric field strengths but with
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6 Non-dipole Effects in the Photoionization of Hydrogen Atoms

varying wavelengths or pulse durations are also reported. The 10-cycle pulse is chosen
in this case to supplement the already existing knowledge for other pulse durations. The
results reported here involve a spectral expansion of the time-independent transition
matrix elements first in a B spline basis set and then using the calculated matrix blocks
for implicit time propagation. Reasonable convergence is found for the following basis
parameters: rmax = 200, L;Mmax = 25, 600 B splines of order k = 10, and a geometric
knot sequence for a varying r up to 40 a.u. followed by a linear knot sequence. This
knot distribution has been found to yield a good probability distribution of both bound
and continuum states [95].

The calculation of the multipole transition matrix elements is implemented in both
the Taylor and the Rayleigh plane-wave series expansion. The comparison between the
two approaches is discussed in section 4. In brief, the Rayleigh plane-wave multipole
expansion series is found to be more accurate and efficient, as predicted by Bugacov [12],
in comparison to the Taylor plane-wave multipole expansion series. Except for compar-
ison purposes, all the results are based on the Rayleigh plane-wave multipole expansion
series. The usual multipole nomenclature, that is, dipole, quadrupole, octupole, etc. is
avoided in the discussion because of the use of the Rayleigh plane-wave multipole ex-
pansion series for which this terminology may be confusing. Instead reference is made
to the various orders of expansion using natural numbers as subscripts beginning from
0 as one progresses to higher-orders in the summation series.

In the reported results, the non-dipole effects are observed in the energy and angle
resolved differential probabilities as well as in the total ionization and excitation yields.
The magnitude of these non-dipole effects increase with the intensity and wavelength
of radiation, the pulse duration, as well as the ionization potential of the initial state.
In the multiphoton regime, the non-dipole effects are relatively smaller as compared to
the dipole effects. However in the tunneling regime, the non-dipole effects may become
dominant as can be verified in the photoelectron angular distributions (PADs) presented
in this chapter. All the interactions, both the dipole and beyond, are also observed to
be dependent on the projection quantum number m of the initial state. Three different
non-dipole asymmetry parameters are discussed as possibilities for further experimental
verification of the predicted physical observables.

6.1 Classical Perspective of Non-dipole Interactions

For a linearly polarized laser field propagating in the +x direction with its electric field
component aligned in the +z direction, the total non-relativistic interactions evaluated
up to the first-order corrections beyond the dipole term in the Taylor expansion is given
by

HI = A1(t)pz − k xA2(t) pz + Ã(t) − k xA1(t)A2(t) (6.1)
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where

A1(t) = A0 f(t) sin(ωt+ δ)

A2(t) =
1

ω
Ȧ1(t) = −E(t)

ω

Ã(t) = A2
0 f

2(t)
1

4
[1 − cos(2ωt+ 2δ)]

(6.2)

k is the wave number, A0 = E0/ω is amplitude expressed in terms of the peak electric
field strength E0, ω is the radiation frequency, f(t) = sin2(πt/τ) is the function de-
scribing the carrier envelope, τ is the pulse length, and δ is the carrier-envelope phase.
Classically, the z component of linear momentum can be defined as pz = mevz with
me = 1 in atomic units. With this classical definition, the interaction in equation (6.1)
therefore takes the form

HI = A1(t) pz − k xA2(t)
dz

dt
− k xA1(t)A2(t)

= A1(t) pz + k x z
dA2(t)

dt
− k xA1(t)A2(t)

≈ A1(t) pz − ω k x z A1(t) − k xA1(t)A2(t)

≈ A1(t) {pz − k x [ω z +A2(t)]}

≈ A1(t)
{

pz − x

c
[ω2 z + ωA2(t)]

}

≈ A1(t)
{

pz − x

c
[ω2 z − E(t)]

}

(6.3)

where the relation

A2(t)
dz

dt
=
d(A2 z)

dt
− z

dA2(t)

dt
(6.4)

is used together with an assumption that the first-term on the right-hand side is vanishing
because the product A2(t) z is slowly varying in time. Here, it is argued that A1(t) ∝ z
and consequently, 1/A2(t) ∝ z. In the framework of the centre of mass and relative co-
ordinates being adopted, the product A2(t) z would actually be a constant in time, for
an electron considered to be initially free, resulting into a zero value in its first derivative
and hence the assumption would be justified. From the simplified classical picture, one
can see that the non-dipole interactions have two-fold dependence. That is, one part
of it depends quadratically on the frequency of radiation and linearly with the electron
displacement in the direction of polarization of the electric field vector, and the other
part depends on the magnitude of the electric field. The field dependent part indirectly
varies with pulse duration. For very short pulse durations, the dependence is inverse
while for very long pulse durations, it can be shown that the dependence tends to be
linear. Both parts vary linearly with the displacement in the propagation direction. This
displacement is caused by the radiation pressure and it induces some ellipticity in the
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6 Non-dipole Effects in the Photoionization of Hydrogen Atoms

interaction dynamics.

From the classical consideration, the excursion radius of a free-electron oscillating
in an electric field is |z| = |E(t)|/ω2. If one substitutes for z in the equation (6.3),
it is found that the two non-dipole interactions are actually comparable (or equal) to
each other and should therefore be considered all together. The superposition of the
two would lead to a destructive interference if they have opposite relative phases and
a constructive interference for similar relative phases. Because of the difference in the
selection rules for each of the non-dipole interactions, the final state would be different for
each case assuming a transition from the same initial state. The difference between the
two interactions can therefore be attributed to the geometry (size and shape) of the states
involved in the transitions other than the magnitude of the transitions themselves, as well
as the relative interference of each with the dipole interactions. Considering both A1(t)
and E(t) in equation (6.3), it can also be observed that the dipole interactions increase
linearly with the magnitude of the electric field whereas the non-dipole interactions
increase quadratically with the electric field amplitude.

6.2 Definitions and Terminology

The multipole-order interaction Hamiltonian can be expanded in terms of the Taylor
(TA) or the Rayleigh series, using spherical Bessel functions (SBA) approximations, as

V (r, t) =
∑

l

A · Pl +
1

2
A · Al (6.5)

with the subscripts l denoting the orders of the orbital angular momentum of the photon-
field included in the multipole expansion. Equation (6.5) is the radiation gauge interac-
tion Hamiltonian introduced in equation (3.83) of section 3.4. The first few interaction
terms of the Taylor plane-wave multipole expansions series(TA) have been specifically
defined as

A · P0 = A1(t) pz

A · P0 + A · A0 = A1(t) pz + Ã(t)

A · P0,1 = A1(t) pz − ωx

c
A2(t) pz

A · P0 + A · A1 = A1(t) pz − ωx

c
A1(t)A2(t)

A · P0,1 + A · A0,1 = A1(t) pz − ωx

c
A2(t) pz + Ã(t) − ωx

c
A1(t)A2(t)

(6.6)
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and of the corresponding Rayleigh plane-wave multipole expansion series (SBA) as

A · P0 =A1(t) j0(kr) pz

A · P0 + A · A0 =A1(t) j0(kr) pz + Ã(t) j0(2kr)

A · P0,1 =A1(t) j0(kr) pz −
∑

m=−1,1

4π j1(kr)A2(t) pz Y
m∗

1 (k̂)Y m
1 (r̂)

A · P0 + A · A1 =A1(t) j0(kr) pz −
∑

m=−1,1

4π

2
j1(2kr)A1(t)A2(t)Y m∗

1 (k̂)Y m
1 (r̂)

A · P0,1 + A · A0,1 =A1(t) j0(kr) pz −
∑

m=−1,1

4π j1(kr)A2(t) pz Y
m∗

1 (k̂)Y m
1 (r̂)

+ Ã(t) j0(2kr) −
∑

m=−1,1

4π

2
j1(2kr)A1(t)A2(t)Y m∗

1 (k̂)Y m
1 (r̂)

(6.7)

with the functions A1(t), A2(t) and Ã(t)as defined in equation (6.2). The summation
over the projection quantum number m does not include m = 0 as specified in equation
(6.7) and in the selection rules discussed in section 3.6. The definitions of the interaction
terms in equations (6.6) and (6.7) are used in all the figure legends in this chapter. The
double indices used in the subscripts of some of these equations show the orders of the
interaction terms defined in that interaction Hamiltonian.

6.3 Validation of Results

Having extended the BEYDIP code to incorporate the higher multipole-order interac-
tions with the transition matrix elements evaluated using the multipole expansion in
either Taylor or Rayleigh series, it was quite necessary to validate the results using
reliable data. The code, in its initial form before the non-dipole extension, was devel-
oped by Yulian Vanne [14] and optimised by Johann Föster (members of AMO group at
Humboldt-Universität zu Berlin) to solve the time-dependent Schrödinger equation for
single-active-electron systems within the dipole approximation. The extension process
involved restructuring the code from the dipole interactions which obey the cylindrical
symmetry relations, enabling the use of a reduced basis size resolved in only n and l quan-
tum numbers, to a non-cylindrical symmetry of higher multipole-order interactions. The
extension required the use of a complete basis-set resolved in the entire non-relativistic
n, l and m quantum numbers. The task in itself is quite involved and prone to minute
programming errors which may compromise the results if careful attention is not paid to
the tiny details while programming. Other than the diagonalization part of the program,
the entire code was amended while trying to retain the structure of the original code for
portability reasons.

While developing the code, emphasis was paid to the optimization with a view of
maximizing the computational resources and enhancing computer efficiency. In achieving
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6 Non-dipole Effects in the Photoionization of Hydrogen Atoms

this goal, the use of established symmetry relations governing the transition matrices
was of great value. Despite the already implemented optimizations, the strong-field
dynamics for wavelengths above the optical regime still present a significant challenge
with regards to computational capacity. This can be viewed as an opportunity for further
development.
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Figure 6.1: Dipole and non-dipole photoelectron energy spectra for a 15 cycle 13 nm laser
pulse with peak electric field strengths E0 = 25, 35 and 45 a.u. in the top, middle, and bottom
respectively. Left: comparison of present and reference data [91]. Right: comparison of the
dipole to the Taylor and Rayleigh non-dipole spectra.

The validation of results in itself has also been quite a challenge since there is not so
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much published work extending beyond the dipole approximation and the computations
are tedious in time. The available literature data is used for both quantitative and
qualitative comparison with the results discussed in this work.

The results of Morten Førre et al. [91] were of natural preference for the validation
process because in the preliminary results of the BEYDIP code, their dipole results
were reproduced exactly . Also, their willingness and actual collaboration in the bench-
marking and troubleshooting of the current results with the inclusion of the non-dipole
interactions was an added advantage. Figure (6.1) compares the non-relativistic results
reported in this work, for a 15 cycle 13 nm laser pulse at the three different peak electric
field strengths E0 = 25, 35 and 45 a.u., with the results presented in the literature data
[91]. They used an interaction Hamiltonian equivalent to the third interaction term in
equation (6.6). On the left is a comparison of the present values against the literature
values for both dipole and non-dipole results evaluated using Taylor expansion only. On
the right is a comparison of the dipole results to the non-dipole results evaluated using
both Taylor and Rayleigh plane-wave expansions from the 0th order up to the 1st order
terms of the plane-wave multipole expansion series.

Figure 6.1 (left) shows a comparison of the present work with the results extracted
from the literature data [91]. The terms of the interaction Hamiltonian adopted are
expressed in equations (6.6) and (6.7). The 13 nm wavelength corresponds to a photon
energy of 3.5 a.u. (or 95.2 eV). For hydrogen atom with the ground state energy of
−0.5 a.u., the absorption of one photon is sufficient to liberate a bound electron to
the continuum state with a kinetic energy of 3.0 a.u., corresponding to the first-photon
peak. In the strong-field regime, the absorption of multiple photons is possible with the
nth-photon peak expected at ≈ (nω − Ip) a.u. in the photoelectron energy spectrum
(PES). The ionization potential Ip can be modified by the dynamic Stark shifts (or
ponderomotive shifts) which correspondingly shift the position of the expected peak in
the energy spectrum. Shorter wavelengths, where a single photon is sufficient to cause
ionization, have the tendency to shift the photon-peak towards the higher photoelectron
energy regime as can be verified in figure 6.1 while longer wavelengths shift the photon-
peak towards the lower regime [130]. The peak at the zero energy in the PES does is not
the first photon peak. It corresponds to either tunnelling or over-the-barrier tunnelling
ionization peak or a two-photon stimulated Compton scattering peak resulting from
absorption of a photon by a dressed initial state followed by the emission of a photon of
similar frequency from a dressed intermediate state.

The good agreement of the dipole and non-dipole results with the reference spectra
using the Taylor expansion series can be used as a validation of the present results. Fig-
ure 6.1 (right) compares the results in the left figure evaluated using the Taylor series
as well as the Rayleigh series. As already discussed in section 4, the Rayleigh and the
Taylor predictions of the non-dipole effects are comparable but not exactly equal. The
discrepancy between the two methods for the spectral parameters considered in this
case increase with photoelectron energies. In the regions where the discrepancy man-
ifests especially in the higher photoelectron energy regime, the higher multipole-order
corrections present in the Rayleigh plane-wave expansion series are quite significant.
The Rayleigh plane-wave expansion, as opposed to the Taylor expansion, can be seen to
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6 Non-dipole Effects in the Photoionization of Hydrogen Atoms

preserve the structural effects present in the dipole spectrum.

6.4 Convergence of Results

In this subsection, the convergence of results with respect to the number of angular mo-
menta as well as the box radius is tested. This is because the quality of the eigenvectors
and eigenvalues intrinsically depend on the box radius and density of states. A bigger
box size is necessary to describe the states more accurately and this would also reflect
in the quality of transition matrices and the measurable observables by extension. The
quality of the states can further be improved by increasing the density of states for a
fixed box size. In principle, a complete basis set requires the number of states to be
defined with an infinite set of quantum numbers. A computation with an infinite num-
ber of states is not only demanding but also impossible. Unless a new trick is found,
only a finite set is usually used depending on the laser parameters and the system ge-
ometry. A suitable choice can then be made after a proper convergence test catering
for the wavepacket spreading during the laser-matter interaction using the extreme laser
parameters in the regimes of interest. The effect of numerical convergence parameters
is adequately described in Yulian’s PhD thesis [14].

The convergence is tested in this case by varying the box radius and the number of
angular momenta while keeping the number of B splines fixed at 600. This in principle
meant that the density of states is varied simultaneously with the radius of the box. It is
observed that the ionization dynamics is poorly described if the box radius is reduced and
the density of states kept constant by fixing the number of B splines to be three times
the box radius. The convergence calculations have been done by using the Rayleigh
plane-wave multipole expansion of the spatial retardation term. This choice is made
due to its inherent accuracy and efficiency over the Taylor plane wave expansion. In
general, the multipole calculations are too demanding in terms of memory capacity and
computational time.

Using some of the symmetry relations discussed in section 3.6.1, the BEYDIP code
is optimized to reduce on the memory demand by more than a factor of two. It is also
established that for the same memory requirements, the implementation in the Rayleigh
multipole expansion is in many orders of magnitude faster, besides providing a higher
degree of accuracy. The only limitation seems to stem from the use of wavelength specific
transition matrix elements as opposed to the Taylor multipole plane-wave expansion
where the dipole and quadrupole matrix elements can be generalized for any wavelength,
but considering the wavelength effects as pre-factors to be considered only during time
propagation.

Figure 6.2 shows the convergence spectra for the multipole-order terms of the interac-
tion Hamiltonian as a function of angular momenta and peak electric field strengths of
the laser pulse. The lowest-order A · p terms within the Rayleigh plane-wave expansion
are shown on the left while all the A · p and A · A terms up to the first-order in the
Rayleigh series are shown on the right-hand side.
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Figure 6.2: Multipole-order photoelectron energy convergence spectra for a 10 cyle 13 nm
laser pulse as a function of angular momenta and peak electric field strengths E0 = 25, 35 and
45 a.u. in the top, middle, and bottom respectively. The box radius and the number of B
spines was fixed at 200 a.u and 600 respectively. Left: Lowest-order A · p0 interaction spectra
in the Rayleigh approximation. Right: Multipole A · p0,1 + A · A0,1 interactions spectra up
to the first-order in the Rayleigh plane-wave series expansion.

The box radius is fixed at rmax = 200 and the number of B splines fixed at 600.
The lowest-order A · p interaction terms spectra show perfect convergence with only
L,Mmax = 15 angular momenta for all the peak electric field strengths considered. On
the other hand, in the multipole-order terms spectra it can be seen that L,Mmax = 15
angular momenta are sufficient for E0 = 25 a.u. only, while E0 = 35 a.u., and E0 = 45
a.u. require L,Mmax = 20 and L,Mmax = 25 angular momenta respectively for sufficient
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6 Non-dipole Effects in the Photoionization of Hydrogen Atoms

convergence. The multipole-order terms spectra show that higher-order electron-photon
interactions involving exchange of angular momenta enhance wave packet spreading and
therefore a higher dimension, scaling with intensity and photoelectron energies, of an-
gular momenta is necessary for full convergence.
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Figure 6.3: Multipole-order photoelectron energy convergence spectra for a 10 cyle 13 nm
laser pulse as a function of box radius rmax and peak electric field strengths E0 = 25, 35 and
45 a.u. in the top, middle, and bottom respectively. The number of B splines was kept
constant at 600. Left: Lowest order A · p0 interaction spectra in Rayleigh approximation.
Right: multipole A · p0,1 + A · A0,1spectra for all the interactions upto the first-order in the
Rayleigh plane-wave expansion.

The convergence of spectra as a function of box radius rmax, while keeping the number
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6.5 Dependence of Ionization on Intensity

of B splines constant at 600 and angular momenta at a maximum of 25 for both L and
M , shows a marginal increase in the convergence of spectra as the box radius increases.
In this case, both the lowest-order A · p interaction term and the multipole-order terms
spectra shows convergence for all the three values of rmax shown in figure 6.3 up to about
9 a.u. photoelectron energies for the three intensity values. Having fixed the number
of B splines at 600 implies that the smaller box radii have a higher density of states
compared to the larger box radius. Prior to these box radius convergence parameters,
calculations with smaller box radii were tried while keeping the density of states constant
at 3 but the results obtained could not converge. Subsequent calculations, keeping the
box radius constant at rmax = 200 and varying the density by factor 2.5 and 3.5 using
500 and 700 B splines did not reveal any further change in the spectrum.

6.5 Dependence of Ionization on Intensity

It is already discussed in chapter 2 that beyond the perturbative regime, ionization is
characterized by strong-field processes which can be classified as multiphoton, tunneling
or barrier-suppression ionization depending on the magnitude of the Keldysh adiabaticity
parameter. The ionization yield in this non-perturbative regime exhibits non-linear
dependence on the pulse intensity owing to the intensity- and wavelength-dependent
ponderomotive potential which becomes comparable to the ionization potential. As
the ponderomotive potential increases, it is expected that the corresponding effects like
radiation pressure also increases in the direction of the laser propagation, relativistic
effects come into play, as well as the quantum electrodynamic (QED) effects. The
radiation pressure is an effect of the force derived from the ponderomotive potential. The
relativistic and quantum electrodynamic effects on the other hand become significant as
the photoelectron velocity approach the speed of light. The spin-dependent features
like spin-orbit coupling, spin-spin interactions are examples of the relativistic effects
whereas the Lamb shift is an example of a QED effect. These non-linear effects are non-
dipole in nature and they may be observable in the photoelectron energy and angular
distributions. They can possibly lead to a change in the total ionization yields relative
to the yields predicted by the dipole approximation.

Figure 6.4 shows the ionization probability on the left and the excitation probability on
the right, as a function of peak electric field strength, for a hydrogen atom initially in the
ground (1s) state interacting with a linearly polarized laser pulse whose wavelength and
pulse duration are fixed at 13 nm and 10 cycles respectively. The orders of the respective
multipole interaction terms are specified by the subscripts (i.e. 0 and 1) in the legends
according to equation (6.7). The effect of various multipole-order terms of interaction
Hamiltonian on the total ionization and excitation probability are compared. From the
ionization probability, it can be seen that all the interaction terms predict the atomic
stabilization beyond a saturation point at about E0 = 12 a.u. During stabilization, the
ionization probability decreases as the intensity increases up to some minimum value
before beginning to rise again. Within the lowest-order (or 0th order) interaction terms,
the minimum value is located around E0 = 30 a.u. If all the higher multipole-order
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6 Non-dipole Effects in the Photoionization of Hydrogen Atoms

interactions considered in this work are included, the minimum drifts towards a lower
value, that is E0 = 25 a.u. This effect was already noted and discussed earlier as a
possible breakdown of atomic stabilization [12, 13].
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Figure 6.4: Ionization (left) and excitation (right) probability dependence on the multipole-
order terms of the interaction Hamiltonian and peak electric field strength for a 13 nm linearly
polarized laser pulse with a fixed pulse duration, τ = 10 cycles.

In this work, it is observed that atomic stabilization persists, but with the stabilization
window narrowed for the laser parameters considered. Indeed, it has been shown with
an approximated non-dipole interaction potential that the non-dipole effects may lead
to the narrowing or enhancement of the stabilization window depending on the laser
parameter regimes in question [145]. The relative importance of the non-dipole terms of
the interaction Hamiltonian can also be observed with the dominant ionizing non-dipole
interaction stemming from the non-dipole A · p1 followed by the non-dipole A · A1

interaction. If all the multipole-order interaction terms up to 1st order are considered,
the overall increase in the ionization probability is higher than the gains of each individual
corrections beyond the dipole approximation.

The excitation probability on the other hand also increases with the peak electric field
strength for the laser parameters considered. The non-dipole A · A1 interaction appears
to be significant in enhancing excitation probability as compared to the other corrections.
In fact, at higher peak electric field strengths, the non-dipole A · p1 interaction seems
to suppress the excitation probability. When all the corrections are put together, the
overall excitation probability also increases to a maximum point around the highest
peak electric field strength considered. The role of A · A1 interaction in enhancing the
excitation probability can be a big boost to resonant excitation and ionization processes,
thereby resulting to the catalysis of the narrowing of the stabilization window. From
the observations in figure 6.4, it can be seen that the dominant non-dipole corrections
are comparable in magnitude and should therefore be considered simultaneously.

Intensity a.u. 1 3 5 10 15 25 35 45

Up a.u. 0.02 0.18 0.51 2.04 4.58 12.72 24.93 41.21

γ 3.50 1.17 0.70 0.35 0.23 0.14 0.10 0.08

Table 6.1: Table showing the variation of the Up and γ with intensity.
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Table 6.1 shows the variation of the ponderomotive potential Up and the Keldysh
adiabaticity parameter γ with the intensity regimes considered in this section. The
Keldysh parameter is typically used for the characterisation of the interactions with
long-wavelength radiation where γ > 1 corresponds to the multiphoton regime and
γ < 1 corresponds to the tunneling regime. In this case, the intensities above ∼ 3 a.u.
for the 13 nm wavelength can be classified to be in the tunneling regime while lower
intensities can be considered to be in the multiphoton regime.

Figure 6.5 shows the energy-resolved photoelectron ionization probability distribution
for the five different atom-laser multipole interaction terms at various peak electric field
strengths. As already explained in the introduction, a 13 nm wavelength laser field
with a pulse duration of 10 optical cycles is used predominantly in this chapter unless
otherwise specified. The goal in this case is to make an explicit comparison of the relative
importance of each of the interaction terms with respect to the dominant zero-order A·p0

(dipole) interaction term. The discussion is restricted to the first two multipole-orders
for which it is already shown in chapter 4 to be the most significant. From this figure,
several key features of the non-dipole effects are manifested. First, the non-dipole A · A1

interaction is the first to manifest at 1 a.u. peak electric field strength beyond the one-
photon peak. But its effect seems to have a weaker dependence on intensity. It can be
seen that it generally gives a weak modulation of the dipole spectrum except at higher
intensities (beyond 25 a.u.) where some of its observable effects show up.

The effects of non-dipole A · p1 interaction on the other hand shows up at about 5
a.u. and remains dominant, with a strong intensity dependence, for the remaining peak
field strengths. The effect of the lowest-order A · A0 interaction term remains negligible
except at higher photoelectron energies and at higher intensities where its effects become
significant. In the Taylor expansion series, this term does not lead to any transition and
therefore it is usually ignored based on a phase-transformation. But within the Rayleigh
expansion series, this term is dependent on the spatial radial co-ordinates and therefore
its contribution is non-vanishing. It actually leads to the same symmetry (e.g. 1s− 2s)
transitions considered to be of higher multipole-order effects.

In general, the non-dipole effects in the energy spectrum are similar regardless of the
interaction. The effects include the enhancement of probability at valleys, the suppres-
sion of probability at the peaks, the disappearance of side-bands, the enhancement of the
short-pulse energy-bandwidth generated low-energy photoelectrons, and the distortion
of the ATI structure by levelling the higher-order multiphoton peaks first. In deed in
the experimental results of reference [146], it was already observed that spatial averag-
ing washes out the single-atom ATI structures in the tunneling regime due to the large
ponderomotive shift of the ionization potential and the relatively weak dependence of
the ionization rate.

In terms of the relative importance, it is again observed from photoelectron energy
spectrum that for the laser parameters under consideration, the non-dipole A · p1 in-
teraction term is the most dominant term. It is followed by the non-dipole A · A1

interaction term, and then the non-dipole zero order A · A0 interaction term which pro-
vides a higher order correction to the dipole approximation (if expanded in the Taylor
series) in comparison to A · p1 and A · A1 interactions.
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Figure 6.5: Comparison of the effect of the various multipole-order interaction terms in the
photoelectron energy spectra for varying peak electric field strength ranging from 1 − 45 a.u.
The other pulse parameters are as specified in figure (6.4).
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6.5 Dependence of Ionization on Intensity

The relative importance of the leading multipole-order corrections is supported by
figure 6.6 in which the relative deviation from the dominant A · p0 interaction term, at
a peak electric field strength of E0 = 25 a.u. on the left and at E0 = 45 a.u. on the
right, is plotted. The relative importance determined is found to be consistent for the
other peak electric field strengths where the non-dipole effects are more pronounced.
These results agree with the observations of the references [92, 93, 96, 124] as well as
the predictions of quantum physics which attributes the paramagnetic effects to be of
leading importance in comparison with the diamagnetic effects [18].
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Figure 6.6: Relative deviation of the multipole spectra from the lowest order A · p (dipole)
interaction spectrum at a peak electric field strength, E0 = 25 a.u. (left) and E0 = 45 a.u.
(right).

The effects of non-dipole A · p1 interaction are associated with the radiation induced
paramagnetism whereas those of the non-dipole A · p1 interaction are related to the ra-
diation induced diamagnetism. In reference to the relative deviations in figure 6.6 shown,
it can be seen that role of non-dipole interactions is not limited to higher photoelectron
energies, as it is always assumed, but cut across the entire energy regime. Even in the
near-zero regime, a relative deviation greater than 1 can be observed signifying that the
non-dipole dynamics dominate at those points.

Figures 6.7 and 6.8 are 3-dimensional colour plots showing the energy resolved pho-
toelectron probability distribution of the lowest-order A · p0 term of the interaction on
the left and that of the multipole-order A · p0,1 + A · A0,1 terms of the interaction on
the right at various peak electric field strengths, E0, ranging from 1 − 45 a.u. Several
interesting phenomena can already be observed from these figures. First, there is an
enhancement of photoelectrons probability in the near-zero energy regime on both spec-
tra as intensity increases. These correspond to the high-frequency low-energy structures
already featured in literature [91].

Second, the probability distribution corresponding to the multiphoton peaks increase
with intensity up to a peak value at about E0 = 12 a.u before beginning to decrease grad-
ually. Coincidentally, this peak value corresponds to the critical intensity demarcating
the onset of stabilization.
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6 Non-dipole Effects in the Photoionization of Hydrogen Atoms

Figure 6.7: 3D-colour plot showing the energy resolved photoelectron probability dis-
tribution of the lowest-order A · p0 term interaction spectrum on the left and multipole
A · p0,1 + A · A0,1 term interaction spectrum on the right at various peak electric field
strengths, E0, ranging from 1 − 45 a.u.

Figure 6.8: Same as figure 6.7 but from a different plane.

The stabilization effect breaks down at the point E0 = 30 a.u. for the dipole spec-
trum, and E0 = 25 a.u. for the multipole spectrum. The population of the low-energy
photoelectrons begin to increase at about the peak value E0 = 12 a.u. for both spectra
although these low-energy electrons’ probabilities are enhanced by the higher multipole-
order effects. As the low-energy electron probabilities increase, the multiphoton ioniza-
tion peaks decrease in amplitude as intensity rises after the onset of stabilization.

Key differences are also observable in the photoelectron energy spectra between the
lowest-order interaction term only and the multipole interaction terms. In the lowest-
order A · p0 term spectrum, the multiphoton peaks remain clearly resolved even at higher
intensities. The above-the-threshold ionization (ATI) structures can also be observed by
noticing that the second-photon peak is suppressed relative to the first-photon peaks for
fixed valued intensity. The side bands are clearly resolved around the first photon peak
and the number of side bands observable increases with intensity. One can argue that
the enhancement of probability at lower energies and the suppression of probability at
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6.5 Dependence of Ionization on Intensity

the multiphoton peaks as the radiation intensity increases correspond to an interplay
of different ionization mechanisms where the former can be attributed to be a barrier-
suppression ionization effect [71] and the latter to be a multiphoton ionization effect
[41].

In the multipole-order terms spectra, there are less side bands which are not clearly re-
solved in the multipole spectrum. The disappearance of peaks and dips is also prominent.
As an example, the second photon peak in figure 6.7 is more resolved in the lowest-order
spectrum than in the multipole-order spectrum at higher intensities. Higher order inter-
actions present in the multipole-order spectrum can also be seen to enhance the (very)
low-energy structures, (V)LES, even in the relatively short-wavelength regime consid-
ered. The differences between the lowest-order A · p0 and multipole-order terms spectra
could be a consequence of destructive interference of the amplitude between the different
multipole interactions.

Despite the fact that the Rayleigh plane-wave multipole expansion has been employed
in the calculations, the results are qualitatively similar to the findings of Morten [91].
In table 6.1, the Keldysh parameter regimes for which the non-dipole structures are
magnified can be seen to be in the deep tunnelling regime. This means that the non-
dipole interactions can be said to enhance tunnelling or over-the-barrier ionization.

Figures 6.9-6.10 show the variation of the photoelectron angular distribution with
intensity. The distributions have been calculated using a generalized relation

I(θ, φ) =
∑

m

Bm(θ) cos(mφ) (6.8)

obtained from equation (3) of reference [116]. In this equation I is the probability dis-
tribution which varies with the polar angle θ and the azimuthal angle φ and Bm(θ)
are complex functions of sin θ, cos θ, the radial matrix elements, and the phase shifts.
The relation successfully reproduced the experimental measurement of azimuthal de-
pendence of the photoelectron angular distribution from 132D3/2−state sodium atoms
aligned transversely to the direction of propapagation, and parallel to the direction of
linear polarization, of 532−nm ionizing radiation [116]. A similar distribution function,
I(φ) = 1 + (2/3)1/2(δ + γ) cosφ with δ and γ as defined non-dipole fitting parameters,
was also used to successfully reproduce the experimental measurements of the azimuthal
angle dependence of 2000 eV Argon 1s photoelectrons at a fixed polar angle θ = 54.7◦

[117].

The expected dipolar probability angular distribution (PAD) as a function of intensity
is well reproduced by the lowest-order A · p0 interaction term as shown in figure 6.9.
It has the typical two maxima at 0 and 180◦ polar angles and a minimum at 90◦ polar
angle. The probabilities generally increase with intensity and at higher intensities, an
additional sub-peak forms at the 90◦ polar angle and two minima form at about 60◦

and 120◦ polar angles. The multipole angular probability distribution on the other hand
can be seen to also vary with the radiation intensity. At lower intensities, the multipole
PADs takes the symmetric doughnut-type distribution with the maxima at 0◦ and 180◦

polar angles and the minimum at 90◦ polar angle, just like the dipole PAD.
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Figure 6.9: Comparison of non-dipole interactions effects in the photoelectron angular distri-
butions for various peak electric field strengths ranging from 1 − 45 a.u. The upper half-circle
correspond to forward angle (φ = 0◦) while the lower half-circle correspond to backward angle
(φ = 180◦) with respect to the propagation direction.
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As the intensity increases, the non-dipole effects manifest first by tending to suppress
the probability at angles less than 30◦ with the horizontal axis and thereafter by also
enhancing the probability at angles greater than 30◦ with the horizontal axis along the
direction of the laser propagation. At the peak field strength E0 = 25 a.u., two maxima
appear at about 70◦ and 110◦ polar angles corresponding to the effect of the first order
A · p interaction. Further increase in intensity leads to a complete reversal of the
multipole PADS with the predicted minimum becoming a maximum and the maxima
becoming minima. In general, the multipole PADs observed can be described using two
axes, the major and the minor axis.

At lower intensities, the major axis is oriented parallel to the electric field polariza-
tion axis (considered in this study to be in the +z direction) and the minor oriented
parallel to the laser propagation axis. As radiation intensity rises, the axis parallel to
the polarization direction shortens as the other axis parallel to the propagation direction
(considered in this study to be in the +x axis) is elongated. At higher intensities, the
picture is completely reversed. The major axis is shifted to be along the propagation
direction while the minor axis is shifted along the polarization direction. The cross-
ing point between the dipole and the non-dipole distributions at high intensities range
between 38◦ and 44◦ relative to the horizontal axis.

The effect of first-order A ·p1 correction term is generally higher, as already discussed,
but comparable to that of the first order A · A1 correction term. This means that they
should always be treated together in order to reproduce accurate non-dipole results since
the overall change in ionization seems to be bigger than a cumulative sum of the change
corresponding to each individual non-dipole interaction. The 0◦ and 180◦ polar angles
correspond to parallel and anti-parallel alignment of the electron to the electric field E

while the 90◦ polar angle correspond to the parallel alignment of the electron to the
radiation propagation vector k.

Similar to experimental observations, the probability angular distributions show the
forward-backward asymmetry with respect to the azimuthal angle φ when non-dipole
interactions manifest. The non-dipole PADs have distorted lobes which are enhanced in
the direction of radiation propagation and suppressed in the reverse direction [116, 117].
The PADs show that as the radiation intensity rises, the photoelectrons are more likely
to be emitted in the plane of radiation propagation. The sharp contrast with the lowest-
order distributions further show that above some critical intensity (above 1 a.u.), higher
multipole-order interactions need to be considered. Figure 6.10 shows the lowest-order
A · p0 (left) and the multipole A · p0,1 + A · A0,1 (right) PAD in the forward-backward
directions of propagation integrated for all the peak elecric field strengths considered.
In the lowest-order interaction term, the PADs are symmetric and concentrated parallel
or counter-parallel to the polarization direction.

At higher intensities, a sub-maximum is formed along the propagation direction for
the lowest-order PAD. The picture formed by the multipole PAD, on the other hand,
shows the transversal cusp-like distribution [147] as the field intensity increases with a
major lobe in the propagation direction and a minor lobe in the counter-propagation
direction. These cusp-like distributions are concentrated, as can be seen in the 3D
photoelectron spectrum at near-threshold energies. One can attribute the cusps to be a
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6 Non-dipole Effects in the Photoionization of Hydrogen Atoms

consequence of tunneling and the barrier-suppression ionization (BSI) since they appear
only at higher radiation intensities. It is noted that the concepts of tunneling and barrier
suppression are usually discussed only for low-frequency fields with the explanation that
at the high-frequencies, the ejected electron does not have enough time to tunnel before
the electric field changes. By observing the present ejected electron distributions, one
can conclude that at very high intensities, even the high-frequency fields display similar
strong-field traits like ATI, HHG, tunneling, BSI, etc. Indeed Delone and Krainov [72]
discuss the possibility of observing BSI at high frequency with the increasing radiation
field strength.
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Figure 6.10: 3D-colour plots showing the photoelectron angular probability distribution of
the lowest-order A · p0 (left) and multipole A · p0,1 + A · A0,1 (right) interaction spectra at
various peak electric field strengths, E0, ranging from 1 − 45 a.u.

Figures 6.11 shows additional 3−D PADs for the lowest-order A · p0 interaction term
compared to the multipole A · p0,1 + A · A0,1 interaction term in figure 6.12 and 6.13.
The x − y and x − z plane side views are shown for both interaction potential terms,
but for the multipole interaction potential term, an additional y − z view is included
because of the asymmetry in its azimuthal distribution. For the lowest-order interaction
term, the x − z and the y − z plane side views are exactly symmetric since there is
no asymmetry in the azimuthal angle dependence in the interaction Hamiltonian. The
multipole distribution is quite different for each of the side views as can be seen in the
plots. Except for the y− z plane side view which has two lines of symmetry in the mul-
tipole distribution, the other planes have only one line of symmetry. At lower intensities
(less than 15 a.u.), the interactions seem to be the perturbative regime (although this
is apparently contrary to the characterization using the Keldysh parameter) where only
the dipole interactions are sufficient to describe the ionization dynamics. This can be
confirmed by the dipole type doughnut PAD distributions in the multipole spectrum for
the ∼ 15 a.u. intensity regimes. The multipole PADs in the 3−D figures illustrate the
self-focussing behaviour of the photoelectron cloud as the laser intensity increases, that
is, the two polar maxima drift towards the propagation direction as intensity rises and
finally converge into one spot at the maximum intensity considered.
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6.5 Dependence of Ionization on Intensity

Figure 6.11: 3D− lowest-order A · p0 photoelectron angular distribution for the intensities
of 15, 20, and 45 a.u. Left: the x−z plane view showing the polar probability variation. Right:
the x − y plane view showing the azimuthal probability variation.
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Figure 6.12: Same as figure 6.11 but for the multipole A · p0,1 + A · A0,1 PADs for the
intensities of 20, 25, 30, and 45 a.u.
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Figure 6.13: Same as figure (6.12) but showing the polar probability variation for the y − z
plane view .

6.6 Dependence of Ionization on Wavelength

In this section, the wavelength dependence of the multipole-order multiphoton ionization
of hydrogen atom in its ground state is investigated using a 10 cycle linearly polarized
laser pulses with peak electric field strengths of 1 a.u. and 45 a.u. The Taylor plane-wave
expansion series is exclusively used in the investigation for computational convenience
only. The Taylor expansion series, as opposed to the Rayleigh plane-wave expansion
series, are advantageous if the focus is solely on the dipole and quadrupole terms of
interactions without considering the effect of higher order interactions . The basis-set
parameters used in the calculations include: rmax = 200, Lmax,Mmax = 25, 600 B splines
of order k = 10, and a geometric knot sequence.

Figure 6.14 shows the variation of ionization probability with wavelength for a 10
cycle linearly polarized laser pulse with its peak electric field strength fixed at 1 a.u.
The symbols indicate the data points while the lines joining them are merely for guid-
ing the eye. The range of the ponderomotive potential Up and Keldysh parameters γ
corresponding to some of the wavelengths is presented in table 6.2. As the wavelength in-
creases, γ decreases in value characterising the interactions to be in the tunneling regime.
The non-dipole effects can be visualized by looking at the relative deviation from the
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6 Non-dipole Effects in the Photoionization of Hydrogen Atoms

lowest-order A · p0 spectrum. From the magnitude of the relative deviation, it can be
seen that the total ionization probability manifests some tiny non-linear non-dipole de-
pendence at the peak intensity considered. The total ionization probability increases
non-linearly with increase in wavelength up to some point before it reaches saturation.
The excitation probability also shows saturation behaviour and a saddle point with a
sub-minimum as the radiation wavelength increases. The non-dipole induced changes
in the probability distribution, on the other hand, rise abruptly and then decreases on
this ionization rising edge upto a minimum at the onset of saturation before it begins
to rise again with some resonant-like enhancements at various points as the wavelength
increase. This observation is also true for excitation except for the initial abrupt rise.
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Figure 6.14: Multipole ionization (left) and excitation (right) probability dependence on
wavelength for a linearly polarized laser field with a peak electric field strength of 1 a.u. and
pulse duration of 10 cycles.

Figure 6.15 shows multipole multiphoton photoelectron energy spectra for various
laser field wavelengths at a fixed peak electric field strength, E0 = 1 a.u. and a fixed
pulse duration of 10 cycle pulses. The corresponding wavelength, in nm, for each graph
is specified inside the graph. The black solid lines correspond to the lowest-order A · p0

term spectra while the red dashed lines correspond to the dipole plus quadrupole spectra.
The multipole A · p0,1 + A · A0,1 spectra consists in this case the 0th− and the 1st−
order transitions in both A · p and A · A interaction terms. In all the wavelengths
considered, it can be observed that non-dipole effects manifest significantly at higher
photoelectron energies. At lower photoelectron energies, the non-dipole effects become
visible as the wavelength increases. For example, non-dipole effects become visible at 0.2
a.u. photoelectron energy for 100 nm while for 8 nm the effects become visible at about
7 a.u. photoelectron energy for the intensity considered. In general, one can conclude
that at a constant intensity the non-dipole effects increase with the wavelength as well
as the photoelectron energies.

Wavelength (nm) 8 10 20 30 50 70 100 150

Up a.u. 0.01 0.01 0.05 0.12 0.30 0.59 1.20 2.71

γ 5.70 4.56 2.28 1.52 0.91 0.65 0.46 0.30

Table 6.2: Table showing the variation of the Up and γ with wavelength.
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Figure 6.16 shows the wavelength dependence of the photoelectron polar angular dis-
tribution corresponding to the dipole (black solid line) and the non-dipole (red dashed
line) spectra at a fixed peak electric field strength, E0 = 1 a.u. and a fixed pulse dura-
tion, τ = 10 cycles. For wavelengths less than or equal to 10 nm, it can be observed that
there is a symmetric enhancement of the ionization probability which one can attribute
to be an effect of the lowest-order A · A0 term. Between 10 − 30 nm, the non-dipole
effect in the angular distribution is not explicitly visible in the angular distribution. As
the wavelengths increase beyond 30 nm, the non-dipole forward-backward asymmetry
sets in and increases with wavelength. The photoelectron probability along and opposite
the polarization direction also decrease simultaneously. From this figure, it is also quite
evident that non-dipole effects at a fixed intensity increase with wavelength.

Based on the Keldysh classification scheme as depicted in table 6.2 and in figures 6.15
and 6.16, the wavelength dependent non-dipole effects in the PES show up at the Keldysh
parameter of order γ ∼ 1. The effects increase as γ → 0. In the PADs on the other
hand, the effects only manifest at γ < 1 and become more significant as the Keldysh
parameter decreases further. The observation is also true for the intensity dependence
already discussed in section 6.5. The significance of the non-dipole effects can be seen
to be more in the tunneling and in the barrier-suppression regime.

The dipole photoionization probabilities have been shown in previous studies [148]
to increase monotonically as the laser wavelength decreases. In the present multipole
probabilities in which the spatial effects embedded in the correlation ∼ kr are included,
the non-dipole probabilities are also seen to increase with wavelengths. At the peak
electric field strength considered, the dipole interactions are dominant but as wavelength
increases, the significance of the non-dipole effects in the total ionization and excitation
yields is observed to increase.

Despite the fact that the total ionization probabilities shown in figure 6.14 are not
as sensitive to the wavelength-dependent non-dipole effects as the angular and energy
differential probabilities at non-varying intensities. The relative importance of the non-
dipole effects as the radiation wavelength increase seems to contradict the reasoning
behind the dipole approximation. The dipole approximation assumes that at longer
wavelengths, the excursion radius at the peak of the field amplitude is far much less
than the radiation wavelength (r ≪ λ) and therefore eik·r ≈ 1 is justified. From the
observations, it is seen that the dipole approximation is likely to breakdown as the
wavelength increases (and not the reverse) and the intensity remains invariant. A similar
argument has been presented by Reiss [85, 86] where the dipole oasis, the lower and upper
dipole limits, and the laser parameter regimes where the non-dipole effects are likely to
manifest are illustrated. According to these references, the lower-dipole limit beyond
which the dipole approximation breaks down manifests at relatively low intensities for
longer wavelengths whereas the upper-dipole limit is sharply defined at a wavelength of
about 0.3 nm regardless of the intensity.
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Figure 6.15: Wavelength dependence of the lowest-order A · p0 and multipole
A · p0,1 + A · A0,1 multiphoton photoelectron energy spectra for a 10 cycle linearly polarized
laser field with a peak electric field strength, E0 = 1 a.u.
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Figure 6.16: Wavelength dependence of the lowest-order A · p0 and multipole
A · p0,1 + A · A0,1 multiphoton PAD for a 10 cycle linearly polarized laser field with a fixed
peak electric field strength of E0 = 1 a.u. The upper half-circle correspond to forward angle
(φ = 0◦) while the lower half-circle correspond to backward angle (φ = 180◦) with respect to
the propagation direction.
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6 Non-dipole Effects in the Photoionization of Hydrogen Atoms

6.7 Dependence of Ionization on Pulse Duration and

Interaction Time

In the perturbative regime, the ionization probability has a linear dependence with
increasing pulse duration [149]. At higher intensities, Horbatsch [150] observed in the
numerical calculation of ATI of hydrogen atom at ∼ 1014 − 1020 Wcm−2 intensities and
0.4 a.u. wavelength that the total ionization yield shows little dependence on pulse
duration at short laser pulses. At longer pulse durations ranging from 100 − 20, 000
cycles, reference [151] observes an increase in ionization yield with pulse duration and a
non-linear wavelength dependence at very high intensities. In this section, the ionization
dependence on pulse duration if the non-dipole terms are included in the interaction
Hamiltonian is investigated.
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Figure 6.17: Ionization probability dependence on the pulse duration (left) and interaction
time (right) for a 13 nm laser pulse with a fixed peak electric field strength, E0 = 45 a.u.

Figure 6.17 shows the total ionization probability as a function of pulse duration on
the left and as a function of time (during interaction) on the right for a laser pulse
with definite wavelength of 13 nm and peak electric field strength of E0 = 45 a.u. The
dependence of ionization probability on time during the interaction process should be
interpreted with caution because the picture is gauge-dependent, but one can get some
insights even within the gauge-dependent picture. In the perturbative regime, where
the non-dipole effects are expected to be vanishingly small, the evolution of ionization
probability has linear dependence with pulse duration. The non-perturbative regime
considered in this case already shows non-linear dependence of the ionization probability
with pulse duration in the lowest-order (A · p0) interaction term. It can be seen that
the ionization probability of a single-cycle pulse is very high, but it falls sharply for a
two-cycle pulse. It then rises at three cycles where it saturates and then gradually falls
to a minimum at about 14 cycles before begining to rise gradually.
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Figure 6.18: Multipole-order ionization probability variation with interaction time for a 5, 10,
and 15 cycle laser pulse, arranged from top to bottom respectively, with 13 nm wavelength
and peak electric field strengths E0 = 25 a.u. on the left and 35 a.u. on the right. The relative
deviation is the difference between the spectra divided by the zero order A · p distribution.

The dependence of the multipole-order ionization probability with pulse duration is
on the other hand quite different. Below three-cycle pulse duration, the trend is sim-
ilar with that of the lwest-order interaction but there after, the ionization probability
increases almost linearly with the pulse duration. On can argue that the non-dipole cor-
rections increase the adiabatic response to laser-matter interactions. For the lowest-order
(A · p0) interactions, one can observe that the non-adiabatic short pulse response lasts
for relatively longer pulse durations as compared to the multipole-order interactions.

The effect of the non-dipole interactions as a function of time during the interaction
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6 Non-dipole Effects in the Photoionization of Hydrogen Atoms

is viewed in terms of the relative deviation of the multipole-order ionization probability
from the lowest-order probability during the time evolution. It can be observed that,
just like ionization process itself, the non-dipole effects possess exponential dependence
on time evolution similar to a charging capacitor.
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Figure 6.19: Multipole-order photoelectron energy spectra for a 5 cycle (left) and a 15 cycle
(right) laser pulse with a wavelength of 13 nm and peak electric field strengths E0 = 25, 35
and 45 a.u. in the top, middle, and bottom respectively.

The influence of the carrier-wave oscillations embedded within the carrier envelope
are also apparent. Figure 6.18 further shows ionization probability variation with time
during the interaction process for different field strengths and pulse durations. It can
be concluded also from this figure that non-dipole effects increase with the laser pulse

126



6.8 Peak Suppression and Peak Shifting

duration, electric field strength, and with time during interaction up to some saturation
point . Figure 6.19 shows the variation of the ATI peak structure with the total pulse
duration for different peak electric field strengths. The ATI peaks are well resolved for
longer pulse durations as compared to the shorter pulse durations.

6.8 Peak Suppression and Peak Shifting

It is discussed in section 2.2.3 that the use of short intense pulses in strong-field ionization
embed a unique signature of peak shifting and peak suppression, a feature which longer
pulse durations do not possess. In this section, the additional effect of the non-dipole
interactions on these short pulse characteristic features is analyzed.
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Figure 6.20: First photon peak position and amplitude as a function of the pulse duration
for the lowest-order A · p0 term (left) and the multipole A · p0,1 + A · A0,1 term (right) for a
13 nm laser pulse with a fixed peak electric field strength, E0 = 45 a.u.

Figure 6.20 shows the first-photon peak position and amplitude as a function of the
laser pulse duration for the lowest-order A · p0 interaction term (left) and the multipole
A·p0,1+A·A0,1 interaction term (right) for a 13 nm laser pulse with a fixed peak electric
field strength, E0 = 45 a.u. It can be considered that at the longer pulse durations, the
effect of the pulse bandwidth is minimal and therefore the position of the peak relative to
the expected photoelectron energy position, 3 a.u. in this case, indicates the magnitude
of the dynamic Stark shift at this intensity [130]. The lowest-order A·p0 interaction term
captures the expected observation as the pulse duration decreases. The peak position
shifts to the left and the peak amplitude is suppressed. This implies that there is an
carrier-envelope induced energy shift that increases inversely with pulse duration, an
effect already known for ionization with few-cycle pulses [152]. This shift appears to be
out of phase with the dynamic Stark shift changing the resonance position towards the
left and reducing the amplitude consequently.

If the multipole interaction terms are considered, the shifting of peaks is less resolved
with the broadening of the peaks and the levelling of the valleys. This property is sim-
ilar to the disappearance of the ATI structure observed at higher intensities for optical
wavelengths, an effect attributed to be a consequence of the spatio-temporal intensity
distribution of the laser focus [152]. That is, the peak structure washes out if volume
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6 Non-dipole Effects in the Photoionization of Hydrogen Atoms

averaging is taken into account for gas jet atoms exposed to different peak intensities
resulting into different light shifts [152, 153]. The vanishing of the ATI structure with
the inclusion of the multipole interaction terms can also be a consequence of the ab-
sence of rescattering, induced by the elliptical polarization of the higher multipole-order
interaction components, which prevent electrons from returning to the ion core [152].
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Figure 6.21: Same as figure (6.20) but for a larger photoelectron energy window.

If the window of photoelectron energy within this first-photon peak is widened as
in figure 6.21, a new unique feature emerges from the multipole-order spectra. There
are two distinct crossings which are absent in the lowest-order A · p0 term spectra.
These crossings show little dependence on pulse duration. We can infer from the carrier-
envelope function that these are the photoelectrons born at time t = 0.25τ and t = 0.75τ
when the value of the cosine function cos 2πt/τ in the pulse envelope is zero. The photo-
electron energy corresponding to those times are completely free from the pulse duration
induced widths. The non-adiabatic short pulse interactions show some small deviations
at these points because of their inverse dependence on pulse duration originating from
the electric field correction term.

Figure 6.22 shows the energy shifts extracted from the deviation of the first-photon
peak position in the energy spectrum relative to the expected 3 a.u. value as a function
of pulse duration. The values have been extracted for only the lowest-order A · p0 term
spectra shown in figure (6.20). Plotted along side is a fitting function

∆ωτ = 0.115

(

1 − exp

[

2π

τ
− 0.24 × 4π2

τ2

])

+ 0.21 (6.9)

which successfully reproduces the pulse duration dependence for pulse widths greater
than four cycles. The intercept value 0.21 could be equivalent to the magnitude of
the dynamic Stark shift corresponding to the peak electric field strength of 45 a.u.
The other constants, 0.115 and 0.24 are the additional fitting parameters which may
be related to the pulse or system characteristic features. The strong deviation from
this fitting function for lower pulse durations can indicate the role of non-adiabatic
interactions at the shorter pulse widths. The point of deviation, τ = 5 cycles, is closer
to the 4 cycles value considered to be the threshold of short pulses where the phase of
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6.9 Dependence of Ionization on the Initial State

the carrier-envelope function becomes physically important [154].
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Figure 6.22: Energy shift of the first-photon peak as a function of pulse duration for the
lowest-order A · p0 interaction in figure (6.20). Black solid line are the extracted values and
the red dashed line is a fitting function.

6.9 Dependence of Ionization on the Initial State

The Ionization dynamics is not only sensitive to the laser parameters but also to the
structural effects like the ionization potential and the initial state geometry. The ioniza-
tion potential and the quality of the eigenvectors can be greatly improved by testing for
convergence of eigenvalues while adjusting the numerical parameters like the box radius,
the number and density of B splines, the order of B splines, and the knot sequence. Sen-
sitivity to the initial state is a characteristic that is made use of in spectroscopy. Each
state has its unique properties like ionization potential and line shifts in the presence of
electric, magnetic, and optical fields. These features manifest in the energy spectrum
making them useful in characterizing the system properties.

Figure 6.23 shows the photoelectron energy spectra for the hydrogen atom at different
initial states for two different intensities. For both intensities, E0 = 25 a.u. and E0 = 45
a.u., the effect of the higher multipole-order terms is quite similar regardless of the initial
state. These effects, as already discussed in previous sections, include: the flattening
of peaks, the disappearance of side bands and ATI structures, and the enhancement
of probabilities at higher photoelectron energies. However, unique differences of the
initial states can also be seen. For example, the 1s − 2s comparison shows that at
near-threshold region, the probabilities are nearly equal. But at higher photoelectron
energies, the probabilities for the 1s initial state are higher than that of the 2s initial
state. Besides, the positions of the 2s peaks are aligned to the positions of the 1s valleys.
The difference in the total ionization yields could be as a result of the different ionization
potentials as well as their difference in relative sizes.
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Figure 6.23: The Rayleigh multipole-order photoelectron energy spectra for a 10 cyle 13 nm
laser pulse as a function of the initial state of a system and peak electric field strengths E0 = 25
and 45 a.u.: 1S−2S (top), 2S−2P0 (middle), and 2P0 −2P1 (bottom) respectively. Solid lines:
Lowest-order A · p0 term. Dotted lines of corresponding colour: Multipole A · p0,1 + A · A0,1

terms. Left: E0 = 25 a.u., right: E0 = 45 a.u.

The ionization probabilities from the 2s and 2p0 as the initial states are also almost
equal in magnitude owing to their energy degeneracy in the absence of fields. But the
2s spectrum displays a lot of wiggles and has slightly higher probabilities at almost
the entire photoelectron energy regime. The 2p0 and 2p1 states on the other hand are
perfectly degenerate in the absence of the electromagnetic fields. But because of the
difference in projection quantum numbers, this degeneracy is removed by the magnetic
field component of the radiation through the Zeeman splitting. The difference in energy

130



6.10 Taylor Versus Rayleigh Expansion

in their dressed states can explain the difference in their spectra. It can be seen that 2p0

has a higher probability than 2p1 but the enhancement of probability as a result of the
multipole-order interaction terms is higher in the 2p1 initial state than in the 2p0 initial
state.

6.10 Taylor Versus Rayleigh Expansion

In this section, the Taylor versus Rayleigh expansion series are compared. The multipole-
order interaction terms include both A · p and A · A up to the 1st order terms. The 0th

order spectrum in the Taylor series is equivalent to the usual electric dipole approxima-
tion (EDA) while the the 0th order spectrum in the Rayleigh series, as already discussed
earlier, provides a spatial correction to the dipole spectrum. This section can be seen
as a supplementary to the discussion in chapter 4 which did not include the effect of
the A · A terms. The interactions compared are also discussed in equations (3.172) and
(3.173) in section 3.7.
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Figure 6.24: Comparison of Taylor (solid lines) and Rayleigh (dashed lines) multipole pho-
toelectron energy spectra up to first order for a 13 nm wavelength 15 cycle linearly polarized
laser field with peak electric field strengths of 25 and 35 a.u. on the left and right respectively.

Figure 6.24 shows the multipole-order photoelectron energy spectra for different terms
of the interaction Hamiltonian in both Taylor and Rayleigh plane-wave expansions for a
13 nm wavelength 15 cycle linearly polarized laser field with peak electric field strengths
of E0 = 25 a.u. (left) and E0 = 35 a.u. (right) respectively. The legends show the
type and the order of interactions considered in the calculation of the transition matrix
elements. The A·p0 in the Taylor approximation (TA) correspond to the standard dipole
approximation. Within the energy regime of interest and considering only the lowest-
order terms of the interaction, it can be seen that the effect of the A · A0 correction is
negligible except at photoelectron energies above 8.0 a.u. where the spatial effects slightly
modify the lowest-order ionization probabilities. If the 1st order corrections of type A·A1

are included, the spatial effects show a slight modification of the 0th order spectra. That
is, the wiggles in the 0th order spectra vanish with the inclusion of this correction within
the Taylor approximation while in the Rayleigh approximation, the wiggles are non-
vanishing. If all the multipole interactions up to the first-order are considered, the results

131



6 Non-dipole Effects in the Photoionization of Hydrogen Atoms

are qualitatively similar with the wiggles vanishing both in the Taylor and Rayleigh
approximations but lacking agreement in the quantitative comparison. The discrepancy
between the two approximations is enhanced by the number of multipole-order terms
included, the magnitude of the peak electric field strength, and the photoelectron energy.
The differences between the two approximations for the same multipole order show the
necessity of higher multipole-order terms (not present in the current order of the Taylor
expansion) in resolving the discrepancies.

6.11 Non-Dipole Asymmetry Parameters, γ

The non-dipole effects, as already discussed in subsection 3.10, can be observed in the
laboratory set up by measuring the forward-backward asymmetry in the photoelectron
angular distributions (PADs). The non-dipole asymmetry stems from the fact that prob-
ability distribution of ionization is enhanced in the direction of the laser field propagation
and suppressed in the opposite direction [155]. In this section, a theoretical calculation
of three types of asymmetry parameters , γi=1,2,3, is presented. The first two (γ1 and
γ2) require at least two detectors to be measured while the third asymmetry parameter
(γ3) requires at least three detectors. The asymmetry parameters are defined as

γ1 = Pf(θ = 90◦, φ = 0◦) − Pb(θ = 90◦, φ = 180◦), (6.10)

γ2 =
Pf(θ = 90◦, φ = 0◦) − Pb(θ = 90◦, φ = 180◦)
Pf(θ = 90◦, φ = 0◦) + Pb(θ = 90◦, φ = 180◦)

, (6.11)

and,

γ3 =
Pf(θ = 90◦, φ = 0◦) − Pb(θ = 90◦, φ = 180◦)

Ppol(θ = 0◦, φ = 0◦)

=
Pf(θ = 90◦, φ = 0◦) − Pb(θ = 90◦, φ = 180◦)

Ppol(θ = 180◦, φ = 0◦)

(6.12)

where Pf , Pb, and Ppol refer to probabilities in the forward propagation direction, back-
ward (or counter) propagation diection, and electric field polarization directions respec-
tively.

The asymmetry parameter γ2 is already established in literature [93, 147] and the
asymmetry parameter γ1 is implied in the definition. On the other hand, the asymmetry
parameter γ3 is suggested in this work based on the theoretical observation of the shift in
angular distribution as the non-dipole effects become significant. Figure 6.25 shows the
three asymmetry parameters plotted as a function of peak electric field strength for a 13
nm laser pulse on the left and as a function of wavelength for a laser pulse with its peak
electric field strength fixed at E0 = 1 a.u.. In both cases, a 10 cycle linearly polarized
laser field is used. Both γ1 and γ3 show that the forward-backward asymmetry, and by
extension the significance of non-dipole effects, increase with the wavelength and the
peak electric field strength. The asymmetry parameter γ3 is actually an amplification of
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6.11 Non-Dipole Asymmetry Parameters, γ

the signal in γ1 based on the fact that as the photoelectron distribution tends towards the
propagation direction, the lobe along the polarization direction shrinks proportionately.
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Figure 6.25: Various forward-backward non-dipole asymmetry parameters as a function of
peak electric field strength for 13 nm wavelength laser field (left) and as a function of wave-
length for a peak electric field strength,E0 = 1 a.u., laser field (right). In both cases, the pulse
is linearly polarized with a finite pulse duration of 10 cycles.
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Figure 6.26: The three forward-backward asymmetry parameters as a function of the total
pulse duration for 13 nm wavelength laser field with a peak electric field strength,E0 = 45
a.u. (left) and the corresponding photoelectron polar angular distributions for selected pulse
durations (right).

The asymmetry parameter γ2 on the other hand technically measures the relative
magnitude of the asymmetry in relation to the total probability transverse to the polar-
ization direction. It depicts a rather complex correlation between the non-dipole effects
and the peak electric field strength as well as the radiation wavelength. By examining
the variation of the ionization probability in figure 6.4 with peak electric field strength,
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it can be seen that the critical intensities defining the onset and offset of stabilization are
captured in γ2 in form of saddle points at about E0 = 10 and E0 = 25 a.u. respectively.
Beyond the offset of stabilization, γ2 becomes a decreasing function of peak electric
field strength because of the increasing backward lobe, leading to a decreasing ratio of
increasing asymmetry in the forward-backward direction.

In figure 6.26, the variation of the different asymmetry parameters with the total
pulse duration in semi-logarithmic plots and the corresponding PADs for selected pulse
durations are shown. Each of the asymmetry parameters presents a different picture,
although γ1 shows a similar trend just like γ3 except for one cycle pulse where the
non-dipole effect is overrated in one and not the other.

6.12 Higher Multipole-Order Effects

Only the multipole interactions of order 0 and order 1 have been considered so far.
In this subsection, the effects of additional multipole interactions of order 2 and 3 are
investigated. These calculations are heavily demanding in terms of the computational
resources and the computational time. In order to visualize the higher multipole-order
effects, a slight compromise on the number of angular momenta used for convergence
has been made by limiting Lmax = 15 and −Lmax ≤ M ≤ Lmax. This compromise is
expected to have minimal impact on the accuracy of the photoelectron distributions
especially at peak electric field strengths less than E0 = 25 a.u.

Figures 6.27 and 6.28 show the multipole-order photoelectron energy spectra and the
corresponding PADs respectively if the additional orders are included in both A · p

and A · A interactions of the 13 nm linearly polarized laser pulse with electric field
strengths E0 = 25, 35 and 45 a.u. in the top, middle, and bottom positions respectively.
The figures on the left correspond to a pulse duration of 10 cycles, while on the right
correspond to a pulse duration of 15 cycles. The subscripts in the figure legends denote
the range of multipole-terms included in the interaction Hamiltonian.

From the figures it is very clear that at the intensities considered, the contributions
of the 2nd order terms of interaction Hamiltonian are also quite significant both in the
photoelectron energy spectra and in the photoelectron angular distributions. The distri-
butions are modified further by the inclusion of these higher multipole-order terms. Just
like the 1st order corrections, the 2nd order corrections raise the ionization probability
at the valleys and lower the peaks slightly. The impact of the additional corrections
are higher at the valleys than at the peaks. This probably because the dipole effects
are significantly smaller at the valleys as compared to the non-dipole interactions. The
effects also increase with the peak field strengths.

The 3rd order terms can be considered negligible if the results are compared by eye.
This confirms the expectation that when extremely high intensities, tending to the rela-
tivistic regime, are used then higher multipole-order terms become extremely necessary
for accurate description of the laser-matter dynamics [18]. Only the intensity dependence
has been considered for the higher multipole-order interactions beyond the first-order
term. But it has been shown that the non-dipole effects also increase with wavelength
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and pulse duration.
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Figure 6.27: Multipole photoelectron energy spectra for a 13 nm laser pulse as a function of
the multipole order for electric field strengths E0 = 25, 35 and 45 a.u. The Lmax and Mmax

are fixed at 15. The legends indicate the interactions considered with the subscripts specifying
the range of multipole orders in the Rayleigh plane wave expansion included. Left: results for
τ = 10 cycle pulse, right: results for τ = 15 cycle pulse.

The longer wavelengths stretch the computational limits further by demanding larger
basis-sets. The increasing relative importance of this interactions as the radiation in-
tensities and wavelengths continue to grow, as expected from the new generation light
sources, pose a great theoretical challenge. The calculations would definitely require
more computational resources and longer computational times for valid results to be
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6 Non-dipole Effects in the Photoionization of Hydrogen Atoms

generated. This calls for better approximation methods to cope with the challenge. It
is hoped that the progress being made with the complex scaling methods would help in
resolving the computational problems associated with longer wavelengths. The develop-
ments in the computational facilities is also expected to increase the efficiency required
especially in the time propagation which usually take longer durations in the simulations.
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Figure 6.28: The multipole-order photoelectron angular distributions (PADS) corresponding
to the laser parameters defined in figure 6.27. The upper half-circle correspond to forward
angle (φ = 0◦) while the lower half-circle correspond to backward angle (φ = 180◦) with
respect to the propagation direction. Left: 10 cycle pulse, right: 15 cycle pulse.
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Chapter Summary

In this chapter, the effects of higher multipole-order interaction terms are discussed rela-
tive to the lowest-order interaction terms. The non-dipole effects are evaluated with the
Rayleigh plane-wave expansion with the exception of cases where an explicit compari-
son with the Taylor plane-wave expansion is done or in the cases where the wavelength
dependence of the non-dipole effects is discussed. Other than wavelength of radiation,
the dependence on: intensity of radiation, pulse duration, and the initial state of hy-
drogen atom is discussed. The non-dipole effects are looked at in terms of the changes
in the calculated energy-resolved, angle-resolved, and total ionization probabilities, as
well as the asymmetry parameters. Besides the first-order correction terms, the effect
of second- and the third- multipole order correction terms is also discussed. Significant
non-dipole effects have been observed in the differential and total ionization probabil-
ities. The non-dipole effects increase with intensity, pulse duration, wavelength, and
photoelectron energy. The effects also further dependence on the structural properties
like the ionization potential, the geometry and the symmetry of the initial states. Based
on the observations in the angular distribution, a new asymmetry parameter has been
suggested in this chapter.
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7.1 Introduction

Helium atom contains two electrons which interact among themselves in addition to
their interaction with the nucleus. It is therefore the simplest many-body system and
this makes it an ideal candidate for studying the electron correlation effects. The ma-
jor problem in the many-body interaction potential is the electron-electron interaction
terms which complicate the reduction to a single-particle equation . In this chapter, the
effective model potentials for a two-electron system is presented. Reasonable eigenvalues
for the helium atom are obtained using these model potentials.

The field-free Hamiltonian of a two-electron system with a nuclear charge Z is given
by

H = −Z

r1
− Z

r2
+

1

|r1 − r2| (7.1)

where the first two terms correspond to the interaction between each of the electrons
and the nucleus and the last term is the electron correlation term corresponding to the
interaction between the two electrons. If this Hamiltonian is used to solve the time-
independent Schrödinger equation

HΦn(r1, r2) = EnΦn(r1, r2) (7.2)

for any eigenstate Φn(r1, r2) of the system, the eigenenergies En for the particular state
are obtained. The major problem in many-body systems is the correlation term coupled
with the fact that the wavefunction of the system is never exactly known making the solu-
tion to the eigenvalue problem difficult. One has to therefore rely on some approximation
methods in trying solve such a problem in order to obtain the correct eigenenergies and
eigenvectors which may be useful for further estimation of many physical parameters
like the transition matrix elements, expectation values, and polarizabilities.

Some of the theoretical approaches used in the past to deal with difficulties resulting
from the electron correlation term includes the independent particle model, the Hyler-
aas method [156], coupled channels method [157], the configuration interaction method
[158], and the explicitly correlated basis and complex scaling method [159]. Many of these
methods have proved to be quite accurate but they are also quite expensive computation-
ally. To overcome this computational challenge especially for really large systems, single
active electron (SAE) methods based on a central effective potential formalism become
advantageous to use, but they also require some approximation to derive a model (or
pseudo) potential which can further be used to generate the eigenvectors and energies.
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The development of the SAE models has been an active field of study for several decades.
The differences in the variety of SAE models are based on different approximations of the
non-local exchange correlation radial integral. Other than the SAE models, the single
and multi-configurational Hartree-Fock (HF) method, density functional theory (DFT)
method, random phase approximation (RPA), and other variants [160] have also been
of great computational advantage.

The major limitation of SAE approximations is their inability to explain multiple-
electron features like multiple excitation, simultaneous excitation and ionization, and
multiple ionization. However, progress is being made towards the realization of these
features. The strengths and limitations of various SAE models have been investigated
[161–165] by directly comparing SAE predictions with those of more sophisticated two-
electron models. On the flip side, the very high intense laser sources currently available
with a short or long wavelength radiation are already probing dynamics beyond the dipole
and into the relativistic regime. Investigation of these features even for the hydrogen
atom is computationally demanding [91, 92] in terms of resources and the time required
for full convergence. This makes such studies quite impractical for a fully correlated
multi-electron systems and therefore the SAE models remain attractive. In deriving the
SAE models, the mean value of the electron-electron correlation can be decomposed into
two parts: the Coulomb charge density (J) correlation integral which is local, and the
exchange density (K) integral which is non-local. The Coulomb part can be evaluated
exactly while the exchange part usually involves different degrees of approximations.

7.2 Derivation of the Model Potentials

The starting point for deriving a model is based on the assumption that each of the
electrons occupy the 1s state when the system is in its ground (1s2) state. It is further
assumed that the single electron orbital for the 1s state is hydrogenic. The 1s orbital
is used to further derive the model potential extensible to any general quantum state of
the system.
The general wavefunction for a two-electron system with its quantum numbers specified
by a set α = {n, l,ml,ms}

Φα(r1, r2) =
1√
2

∑

n,l

cn,l[φ1s(r1)φnl(r2) + φ1s(r2)φnl(r1)] (7.3)

is considered as a symmetric superposition of the product of the orbitals but with one
of the electrons frozen in the 1s state. The anti-symmetrization of the wavefunction is
considered to be determined by the spin states. This is justified for the ground state
which is a singlet state and therefore the anti-symmetric part is limited to the spin
component of the ground state vector. This assumed wavefunction is then used to
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determine the general expectation value of the potential function of the Hamiltonian as,

〈Φα(r1, r2)|V (r1, r2)|Φα(r1, r2)〉

= −〈Φα(r1, r2)|Z
r1

|Φα(r1, r2)〉 − 〈Φα(r1, r2)|Z
r2

|Φα(r1, r2)〉

+ 〈Φα(r1, r2)| 1

|r1 − r2| |Φα(r1, r2)〉

=
∑

n,l

|cn,l|2[−1

2
〈φn,l(r1)|Z

r1
|φn,l(r1)〉 − 1

2
〈φ1s(r2)|Z

r2
|φ1s(r2)〉

− 1

2
〈φn,l(r2)|Z

r2
|φn,l(r2)〉 − 1

2
〈φ1s(r1)|Z

r1
|φ1s(r1)〉

+
1

2
〈φn,l(r1)φ1s(r2)| 1

|r1 − r2| |φ1s(r2)φn,l(r1)〉

+
1

2
〈φn,l(r2)φ1s(r1)| 1

|r1 − r2| |φ1s(r1)φn,l(r2)〉

+
1

2
〈φn,l(r1)φ1s(r2)| 1

|r1 − r2| |φ1s(r1)φn,l(r2)〉

+
1

2
〈φn,l(r2)φ1s(r1)| 1

|r1 − r2| |φ1s(r2)φn,l(r1)〉]

(7.4)

where the single-electron functions have been considered to be ortho-normalized. The
last two terms arise from the exchange integral where some approximations need to be
considered as well. We can reduce this problem, using the orthogonality of eigenstates
argument, to

〈Φα(r1, r2)|V (r1, r2)|Φα(r1, r2)〉

=
∑

i,n,l

|cn,l|2[−1

2
〈φn,l(ri)|

Z

ri
|φn,l(ri)〉 − 1

2
〈φ1s(rj)|Z

rj
|φ1s(rj)〉

+
1

2
〈φn,l(ri)φ1s(rj)| 1

|ri − rj | |φ1s(rj)φn,l(ri)〉

+
1

2
〈φn,l(ri)φ1s(rj)| 1

|ri − rj | |φ1s(ri)φn,l(rj)〉]

(7.5)

where the i index represents either electron 1 or electron 2 and j index represents the
other electron. The second term is exactly known, and the inner integral of the direct
correlation term can be evaluated reducing the problem to only one radial co-ordinate.
The major challenge in evaluating the electron correlation term as already stated is
the method of integrating the exchange integral. In this work, a local approximation
to the exchange integral is made by considering its effect as a small correction to the
Coulomb part of this electron-electron interaction. As usual with many body problems,
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the potential function of the two-electron system can be expressed as

V (r1, r2) = −Z

r
+ Vscreen(r) (7.6)

where one of the electrons is considered to be the active electron and the other electron
is frozen in the 1s orbital of the ground state with a task of shielding the active electron
from experiencing the full nuclear potential with a screening potential Vscreen(r). r is
the mean field radial position of the active electron from the nucleus.

The correlation term 1
|r1−r2| can be expanded in Legendre polynomials as

1

|r1 − r2| =
∞
∑

l=0

rl
<

rl+1
>

Pl(cos θ) (7.7)

where Pl(cos θ) are the Legendre polynomials of order l, r<(>) corresponds to the
lesser (greater) electronic radial distance between the two electrons, and θ is the relative
azimuthal angle between the electrons or equivalently in spherical harmonics as

1

|r1 − r2| =
∞
∑

l=0

+l
∑

m=−l

4π

2l + 1

rl
<

rl+1
>

Y m∗
l (r̂<)Y m

l (r̂>) (7.8)

with the terms as already predefined. If the two electrons are in their ground state,
then one can approximate the correlation term with only the first term of the series in
equation (7.7). With this approximation, the inner part of the direct correlation term
can then be evaluated using an assumed hydrogenic 1s orbital as

〈φ1s(r2)| 1

|r1 − r2| |φ1s(r2)〉 =
1

r1

∫ r1

0
dr2 r

2
2 |R1s|2 +

∫ ∞

r1

dr2 r2 |R1s|2

= 4Z3[
1

r1

∫ r1

0
dr2 r

2
2 exp(−2Zr2) +

∫ ∞

r1

dr2 r2 exp(−2Zr2)

= 4Z3[−{ r1

2Z
+

2

(2Z)2
+

2

(2Z)3r1
} exp(−2Zr1) +

2

(2Z)3r1
]

+ { r1

2Z
+

1

(2Z)2
} exp(−2Zr1)]

= 4Z3[−{ 1

(2Z)2
+

2

(2Z)3r1
} exp(−2Zr1) +

2

(2Z)3r1
]

=
{1 − (1 + Zr1) exp(−2Zr1)}

r1

(7.9)

In principle one can be able to use any assumed trial function with proper normalization
to evaluate the inner integral and then a variational procedure can be used to optimize
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the ground state energy [161, 166]. Likewise, the integral

〈φ1s(r2)|Z
r2

|φ1s(r2)〉 = 4Z4
∫ ∞

0
dr2 r2 exp(−2Zr2)

= 4Z4 1

(2Z)2

= Z2

(7.10)

Using equations (7.9) and (7.10) and excluding the exchange term, the model potential
Vpot can be given by

Vpot =
1

2

{1 − Z2r − Z − (1 + Zr) exp(−2Zr)}
r

. (7.11)

If the exchange correlation interaction potential is added, assuming equivalence with the
direct part, one obtains the total effective central potential as

Veff(r) =
1

2

{2 − Z2r − Z − 2(1 + Zr) exp(−2Zr)}
r

≈ −Z

r
+

{1 − Z2

2 r − (1 + Zr) exp(−2Zr)}
r

(7.12)

where the normalization constant is taken to be unity and a further approximation which
neglects factor 1/2 of the nuclear interaction is assumed. The second term on the right
hand side can be considered as the screening potential Vscreen(r). This central potential
does not give the correct ground-state value. An adjustable core polarization potential is
considered to set the ground-state. The final effective model potential for a two-electron
system can then written as

Vmodel1 ≈ −Z

r
+

{1 − Z2

2 r − (1 + Zr) exp(−2Zr)}
r

+ Vpol(r) (7.13)

where the last term is the one particle core polarization potential which gives the ground
state static adiabatic dipole polarizability correction. Here the value of the cut-off func-
tion [167]

Vpol(r) = − αd

2r4
[1 − exp(−(

r

rc
)4)] (7.14)

is numerically fitted with the exact value of the static dipole polarizability of helium
αd = 1.38376079 [168] and rc = 1.6375 in order to obtain a reasonable ground state
eigenvalue of −2.90368 for the helium atom.

In order to optimize the model potential further, the parameters in equation (7.13)
were adjusted stochastically until the quality of eigenstates and eigenenergies improved
significantly. A reasonable description of the eigenstates and eigenvalues with the po-
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tential of the form

Vmodel2(r) = −2Z + Z2r − 2 + [1 + 3Zr] exp(−2Zr)

2r
+ Vpol(r)δ1s

= −Z

r
+

1 − Z2r
2 − 1

2 [1 + 3Zr] exp(−2Zr)

r
+ Vpol(r)δ1s

(7.15)

was obtained with the static dipole polarization potential Vpol(r)

Vpol(r) =
1 − exp(−[ r

rc
]4)

2r4
(7.16)

having an adjustable cut-off parameter rc set at rc = 1.25 for rmax = 300 a.u. added
to it in order to reproduce the ground state eigenvalue for helium. This additional
polarization potential is purely an estimation of the higher-order contributions of the
non-local exchange potential. The justification for using the polarization potential for the
ground state alone is based on the fact that the ground state experiences an additional
confinement since the screening electron also occupies the 1s state and therefore the
higher-order terms resulting from the exchange correlation would be non-vanishing as
opposed to the excited states where these terms may be negligible because of the large
spatial separation between the two electrons.
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Figure 7.1: Variation of the model potentials with the scattering parameter r. Left: long
range limit. Right: Short range limit.

Figure 7.1 shows the variation of the two model potentials with the scattering parame-
ter r. In the limit of a large r, one can see that the effective potential approaches a value
V (r) → −2 which is corresponds to a single-electron ionization threshold in a frozen-
core model potential. In the limit r → 0, the screening potential due to the electron-
electron correlation approaches the short-range limit in which the active-electron feels
the presence of the full nuclear change resulting into a deeper effective potential. The
difference between the two model potentials clearly manifests in the short-range limit.
Actually, this could be the regime in which the validity of the mean-field approxi-
mations used in modelling the effective potentials fails. The accuracy in this short
range limit can only be improved by tackling the complicated non-local exchange po-
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7.2 Derivation of the Model Potentials

tential integral. The density functional theory research is focussed in this direction.

S. No. model1 model2 Ref. values I.P

L = 0

1. -2.9037165053 -2.9035233717 -2.903724377 -0.9035705688

2. -2.1576481314 -2.1477891839 -2.145974037 -0.1573692781

3. -2.0644680097 -2.0618954237 -2.0612719 -0.0644057390

4. -2.0348796243 -2.0338534642 -2.033586 -0.0348561014

5. -2.0218221184 -2.0213131765 -0.0218107484

L = 1

1. -2.1274580764 -2.1262784705 -2.12384308 -0.1279843895

2. -2.0563508111 -2.0559881432 -2.05514637 -0.0565276620

3. -2.0315942853 -2.0314398674 -2.0310696 -0.0316710698

4. -2.0201782110 -2.0200988916 -2.0199059 -0.0202179423

5. -2.0139925948 -2.0139466316 -0.0140156982

L = 2

1. -2.0555778603 -2.0555597268 -2.05562071 -0.0555761912

2. -2.0312624312 -2.0312524585 -2.0312798 -0.0312618752

3. -2.0200070618 -2.0200014311 -2.0200158 -0.0200068385

4. -2.0138931919 -2.0138897722 -2.0138989 -0.0138930856

5. -2.0102068730 -2.0102046591 -0.0102068155

L = 3

1. -2.0312502247 -2.0312500085 -2.0312551444 -0.0312501060

2. -2.0200001819 -2.0200000072 -2.0200029370 -0.0200000884

3. -2.0138890169 -2.0138888941 -2.0138906837 -0.0138889521

4. -2.0102041713 -2.0102040853 -2.010205246 -0.0102041263

5. -2.0078125641 -2.0078125027 -0.0078125321

Table 7.1: Numerically calculated eigenvalues using the present model potentials at r = 0
versus the reference [159] eigenvalues and the ionization potentials evaluated using another
model potential [169]. A box radius rmax = 300 a.u. and 600 B splines is used in the
calculations. Model1 values are evaluated using equation (7.13) and model2 values using
equation(7.15).
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7 Helium Model Potential

S. No. model1 model2 Ref. values I.P

L = 4

1. -2.0200000018 -2.0200000000 -2.0200007108 -0.0200000003

2. -2.0138888908 -2.0138888888 -2.0138893453 -0.0138888893

3. -2.0102040832 -2.0102040816 -2.0102043836 -0.0102040820

4. -2.0078125012 -2.0078124999 -0.0078125003

5. -2.0061728405 -2.0061728395 -0.0061728397

L = 5

1. -2.0138888889 -2.0138888889 -2.0138890346 -0.0138888889

2. -2.0102040816 -2.0102040816 -2.0102041827 -0.0102040816

3. -2.0078125000 -2.0078125000 -2.0078125737 -0.0078125000

4. -2.0061728395 -2.0061728395 -0.0061728395

5. -2.0049999944 -2.0049999944 -0.0049999944

L = 6

1. -2.0102040816 -2.0102040817 -2.0102041204 -0.0102040816

2. -2.0078124999 -2.0078125000 -2.0078125284 -0.0078125000

3. -2.0061728395 -2.0061728395 -2.0061728509 -0.0061728395

4. -2.0049999977 -2.0049999977 -0.0049999977

5. -2.0041316082 -2.0041316082 -0.0041316082

L = 7

1. -2.0078125000 -2.0078125000 -2.0078125124 -0.0078125000

2. -2.0061728395 -2.0061728396 -2.0061728489 -0.0061728395

3. -2.0049999994 -2.0049999993 -2.0049999968 -0.0049999993

4. -2.0041319543 -2.0041319544 -0.0041319543

5. -2.0034579633 -2.0034579633 -0.0034579633

Table 7.2: Continuation of table 7.1 for higher angular momenta.

The difference between model1 and model2 potentials can be accounted for by the
difference in the screening potential of the frozen electron on to the active electron. The
table 7.1 and 7.2 below shows some of the eigenvalues calculated using the model po-
tentials defined in equations(7.13) and (7.15), hereby referred to as model1 and model2
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7.3 Non-Orthogonality of the s States

respectively, in comparison with those calculated using correlated basis set and com-
plex scaling [159] and the ionization potentials evaluated using the model potential of
reference [169].

It can be seen from tables 7.1 and 7.2 that the model2 values are in very good agree-
ment with the eigenvaues of reference [159] for all the states considered while the model1
values are also in very good agreement with the relative ionization potentials generated
using the model of [169]. In comparison, one can say that model2 performs better than
model1 potential. The advantage of the current model potentials is that, other than
the polarization potential term which is adjustable to obtain a good fit for the ground
state energy, the screening potential is entirely dependent on the nuclear charge and the
screening radius without any additional fitting.

7.3 Non-Orthogonality of the s States

The application of the Hamiltonian operator given in equation (7.15) numerically leads
to non-orthogonality between the ground state and other s states. This ensuing non-
orthogonality has to be carefully treated since orthogonality and normalization (ortho-
normalization) are some of the fundamental principles upon which quantum mechanics
is founded. The non-orthogonality of the ground state can fortunately be corrected
by applying the Gram-Schmidt orthonormalization procedure which is an established
method for orthonormalizing a set of vectors in an inner product space, most commonly,
the Euclidean space Rn.

The Gram-Schmidt orthonormalization process takes a finite, linearly independent sets
S = {v1,v2, · · · ,vk} for k ≤ n and generates an orthogonal set S′ = {u1,u2, · · · ,uk}
that spans the same k-dimensional subspace of Rn as S. The application of the Gram-
Schmidt process to the column vectors of a full column rank matrix yields the QR
(orthogonal and triangular matrix) decomposition.

In the Gram-schmidt orthogonalization process, the projection operator is defined by

Proju(v) =
〈v,u〉
〈u,u〉u (7.17)

where 〈v,u〉 denotes the inner product of the vectors v and u. This operator projects
the vector v orthogonally onto the line spanned by vector u. If vector u = 0, then
Proj0(v) := 0 is the projection mapping every vector to zero and it is referred to as a
zero map.

The Gram-Schmidt process can be expressed as a recursive routine that generates an
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7 Helium Model Potential

orthogonal vector as follows

u1 = v1

u2 = v2 − Proju1
(v2)

u3 = v3 − Proju1
(v3) − Proju2

(v3)

u4 = v4 − Proju1
(v4) − Proju2

(v4) − Proju3
(v4)

...

uk = vk −
n−1
∑

j 6=k

Projuj
(vk) = vk −

n−1
∑

j 6=k

〈vk,uj〉
〈uj ,uj〉uj

(7.18)

with a corresponding orthonormalized vector defined as

ek =
uk

||uk|| (7.19)

where ||uk|| is the modulus of the vector. The sequence S′ = {u1,u2, · · · ,uk} is the
required system of orthogonal vectors, and the vectors S” = {e1, e2, · · · , ek} form an
orthonormal set.

7.4 Helium Multiphoton Ionization Probability

As a test of model2 potential, the wavelength dependent ionization probability of helium
atoms is evaluated at an intensity of 2.97 × 1014 Wcm−2 reported in the works of Armin
Scrinzi [159]. The reference data were evaluated by solving the TDSE for atoms with
two active electrons in a strong laser field using an accurate method which employs
complex scaling and an expansion in an explicitly correlated basis. In this method,
they could capture both single and double electron transition dynamics where as in
our model potential, one of the electrons is frozen in its ground state and therefore
dynamics is only possible with the active electron. All the present calculations including
the non-dipole corrections in the helium atom are evaluated using the Taylor plane-wave
multipole expansion series of the spatial retardation term. Figure 7.2 (left) shows the
total ionization probability results generated with model2 potential in comparison with
the reference results.

It can be seen that the present results compare well with the literature data and
the discrepancy between them may be associated with the contribution of the double
excitation and double ionization dynamics not captured in the present model potential
but present in the literature data. At photon energies above the ground state ionization
threshold, only a single photon is sufficient to cause ionization from the ground state.
The equivalence of our results to the reference probabilities in this regime show that the
ionization dynamics is governed dominantly with single electron transitions.
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Figure 7.2: Left: The wavelength dependent dipole ionization probability calculated using the
present model potential (black) in comparison the reliable ionization probability in literature
[159] (blue). Right: Similar as the probability distribution on the left figure but with additional
non-dipole interaction potentials.

At photon energies below the ground state ionization threshold, multiple photon ab-
sorption is necessary for ionization and in this regime the contribution of double ion-
ization may be seen to be quite significant. Figure 7.2 (right) shows the additional
contribution of the non-dipole interactions to the ionization probability. The goal in
this case was to determine the photon energy regimes at the defined intensity where the
non-dipole effects may be manifested.

The non-dipole enhancement of probability at various photon energy ranges in the
multiphoton regime are clearly visible. In the single-photon ionization window, the
non-dipole effects in the total ionization probability are insignificant. The contribution
of the non-dipole effects at these relatively low strong field intensity regime may be
surprising especially their appearance in the total ionization yield for a broad spectrum
of wavelengths.

In figure 7.3 (left), the multipole ionization and excitation probability calculated using
model2 potential are compared with the reference dipole ionization probability. The
black solid line shows the lowest-order results in A · p interaction, the green dashed line
shows the zero order results in A · p plus A · A interactions, and the red dash dot line
shows the A ·p plus A ·A interaction terms up to the 1st order. The resonant structures
in the reference data are successfully reproduced by the model2 potential.

As expected within the dipole approximation, the effect of the A · A interaction
vanishes. This justifies the use of the phase transformation in moving from the radiation
gauge to velocity gauge within the dipole approximation. In figure 7.3 (right), the
non-dipole effects in the excitation probabilities only is examined. It is found that
the non-dipole effect in the excitation probability is negligible at the laser parameters
considered. It is not clear whether difference between the dipole ionization plus excitation
probabilities generated using the present model2 potential and the literature values only
emphasize the role of double ionization and double excitation or otherwise.
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Figure 7.3: Left: The wavelength dependent multipole ionization plus excitation probabil-
ity calculated using the present model potential (black, green, and red) in comparison the
reliable ionization probability in literature [159] (blue). Right: Only the multipole excitation
probability is presented.

From the results, it may be curious to note that the intensity considered is approxi-
mately two orders of magnitude lower than unity (in atomic units), yet at this relatively
lower intensity some non-dipole effects causing enhancement of the total ionization prob-
ability are already significant in the multiphoton regime. Since the effect of the 0th order
quadratic term A · A is absent (within the Taylor plane-wave multipole expansion) at
the considered laser parameters, it can be concluded that the apparent non-dipole effects
emanate from the 1st order corrections in A · p and A · A interaction terms. At the
photon energies where the observed non-dipole effects are significant, they can be seen to
be comparable in magnitude with the assumed double excitation and double ionization
induced changes in ionization probability distribution of the literature data.

From these preliminary results of helium, it can be suggested that for multiphoton
transitions with helium atoms at radiation intensities of ∼ 1014 Wcm−2 and above, the
contribution of non-dipole effects need further investigation.

Chapter Summary

In this chapter, two approximate model potentials for helium atom are derived. Reason-
able eigenvalues are obtained using the model potentials. One of the model potentials is
used further to probe the wavelength-dependent excitation and ionization processes for
helium atom in a strong-field regime. The results obtained compare favourably with the
literature data. Some non-dipole effects are also reported at the relatively low intensity
regime considered showing that at higher intensities, the use of the dipole approximation
may not be valid.
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8 Conclusion

An existing program has been extended to incorporate the effects of higher multipole-
order interaction terms in the solution of the non-relativistic time-dependent Schrödinger
equation (TDSE) describing a system interacting with an electromagnetic field. The
resulting coupled integro-differential equations are solved within the single active electron
(SAE) approximation. The original program was initially developed in our research
group for the solution of non-relativistic SAE TDSE using the dipole approximation in a
reduced basis-set. The extension exercise involved an entire restructuring of the program
to allow for multiple interactions and the broken cylindrical symmetry that come into
play with the multipole A · p and A · A terms of the interaction potential if the m
quantum numbers are not conserved.

The non-dipole effects have been included through the multipole expansion of the
plane-wave spatial phase retardation term, exp(ik · r), using both Taylor and Rayleigh
multipole expansions series for comparison purposes. In order to check the correctness
of the implementation, the calculations are performed for atomic hydrogen using the
laser parameters in [91], that is, for a ground-state hydrogen atom exposed to 13 nm
(ω = 3.5 a. u.) 15 cycle laser pulses with varying peak electric-field strengths (E0 = 25,
35, and 45 a. u.). The numerical parameters used include a box size of rmax = 200 a.u.,
angular momenta up to Lmax = 25, and 600 B splines per angular momentum. Based on
the reference [91] interaction potentials, it was possible to reproduce their results exactly
using the Taylor plane-wave multipole expansion series. This was a good indication
that the implementation in the extended program was correct and therefore the results
presented are considered reliable and valid.

The extended BEYDIP code is further used to compare the numerical advantages of
using either the Taylor or the Rayleigh plane-wave multipole expansion series of the
spatial retardation term. The dependence of total, and differential where applicable,
multipole ionization and excitation probabilities of hydrogen atoms on intensity, wave-
length, pulse duration, and the initial state is also tested. The TDSE results for different
multipole interaction terms are compared while investigating the interaction strength.
The possible effects of multipole interaction terms of order 2 and 3 are also included
as part of convergence check in the multipole orders. Part of the interest in the re-
search project was to extend the multipole interaction dynamics to the helium atom
using the SAE approximation. This required the use of a model potential to incorpo-
rate the electron-electron interaction effects for this simple multi-electron system. To
achieve the goal, a frozen core two-electron model potential has been developed. The
model potential can reproduce the ionization probabilities of helium atom interacting
with short pulse intense laser fields with relatively good accuracy. The results obtained
are summarized as follows:
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8 Conclusion

• The Rayleigh plane-wave expansion of the spatial retardation term is not only
more accurate but also more efficient with regards to computational time than
the Taylor plane-wave expansion. Very high orders of Taylor expansion may be
necessary to obtain near-perfect convergence with the Rayleigh plane-wave expan-
sion. The Rayleigh plane-wave expansion has the additional advantage of allowing
same symmetry transitions in its lowest-order A · A interaction term which would
ortherwise be forbidden transitions within the dipole approximation.

• The lowest-order term in the Rayleigh plane-wave multipole expansion series,
within the cylindrical symmetry, can be instrumental for a rough estimate of the
laser parameter regimes where the spatial effects become important and hence
the dipole approximation would not be valid. This may be specifically important
for longer wavelengths where a broken cylindrical symmetry would not be feasi-
ble computationally. It is shown in this work that at intensities ∼ 1016 Wcm−2

corresponding to an 800 nm Ti:Sa laser, the spatial relativistic effects in the vec-
tor potential are likely to manifest in the photoelectron energy distribution. This
means that the radiation pressure effects, which are an order lower in terms of the
fine structure constant, would become significant at relatively lower intensities.

• The dominant correction to the dipole approximation is the quadrupole A · p

interaction followed by the quadrupole A · A interaction for the laser parameter
regimes considered in this work. This point has been a subject of debate which to
date remains unresolved.

• At the highest intensities considered in this work, the effects of the 2nd-order
multipole interaction terms contributing to the octupole transitions are clearly
visible in the photoelectron energy spectrum. The effects of the 3rd-order multipole
interaction terms contributing to the hexadecapole transitions are negligible. The
3rd-order multipole corrections can then be considered as the limit of convergence
of the multipole-orders for the intensity and photoelectron energy regimes specified.

• The non-dipole effects for a fixed wavelength and a fixed pulse duration increase
with intensity. At lower intensities, dipole transitions are dominant as can be
seen in the corresponding photoelectron energy spectra (PES) and photoelectron
angular distributions (PADs) in these regimes. Above some critical intensity, the
non-dipole transitions manifest in the electron energy spectrum washing out the
ATI peak structures and enhancing the low- and very low-energy peak structures.
The alignment of the PADS is also transformed from being oriented in the electric
field polarization direction for a linearly polarized laser field to being oriented in the
laser propagation direction for intensities where the non-dipole effects dominate.

• The non-dipole effects for a fixed intensity and a fixed pulse duration increase with
wavelength. The wavelength-dependence of the non-dipole effects can be sensi-
tively detected in the differential ionization probabilities as opposed to the total
ionization probabilities. As wavelength increases, the convergence with respect to
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the box radius and angular momenta becomes increasingly demanding and the ion-
ization probability is also likely to get into saturation at relatively low intensities.

• The multipole ionization probability for a fixed intensity and a fixed wavelength
shows a different pulse duration dependence as compared to the dipole transition
ionization probability. In the multipole case, non-adiabatic effects disappear with
a much shorter pulse duration where as for the dipole case, they thrive for a
longer pulse durations. The dipole transition related effects like multiphoton peak
shifting and peak suppression also tend to be washed out when the higher-order
multipole interaction terms become dominant. The multipole energy spectra, as
opposed to the dipole energy spectra, show two distinct points where the ionization
probabilities have weaker dependence on the pulse duration.

• If different initial states are considered, the multipole ionization probability dis-
tributions show sensitive dependence on the corresponding ionization potentials,
the initial state orbital and projection symmetry. The m = 1 initial state seems
to experience a larger non-dipole effect as compared to m = 0 initial state if other
quantum numbers are the same.

• For any laser parameter regime, a new non-dipole backward-forward asymmetry
parameter is suggested that can be used in complementary terms with the already
established non-dipole asymmetry parameters. It is shown that the asymmetry
parameters not only show the relative non-dipole strength but also reveal the
critical intensities in the interaction dynamics where change of processes are likely
to occur.

• In a bid to extend the multipolar interactions to the two-electron systems, two
approximate model potentials that can describe the interaction dynamics of the
system interacting with strong laser-fields with relatively good accuracy are de-
veloped. This is achieved by adopting a modified Hartree-Fock approximation
formalism in the analytical evaluation of the double integral using the hydrogenic
orbitals as the trial wavefunctions.

• The wavelength dependent non-dipole effects in the total ionization probabilities
for helium at a fixed intensity of 2.97 × 1014 Wcm−2 and a pulse duration of 3.8 fs
are shown to increase with wavelength just like for the hydrogen atom case. These
effects are evaluated using the Taylor plane-wave multipole expansion series of the
spatial phase retardation term.

There are opportunities for further development in the extended code. First, one may
consider a possible implementation of the multipolar interaction dynamics using exterior
complex scaling method. This may have the potential of solving the computationaly de-
manding long wavelength interaction dynamics with good accuracy, improved efficiency,
and reasonable basis size. This is already implemented in part in the BEYDIP code, but
it requires further code-testing and validation. Second, an extension into the relativistic
interaction dynamics by transforming the non-relativistic time-dependent Schrödinger
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equation into the time-dependent Pauli equation is straight forward and can be achieved
with minimal effort. This has the advantage of treating the spin-dependent interac-
tions on an equal footing with the field-dependent multipolar interactions. The ultimate
comparison of the results evaluated using the Schrödinger equation, Pauli equation and
the Dirac equation may be a good link between the non-relativistic and the relativistic
description of the interaction dynamics. Third, extending the BEYDIP code beyond
the single active electron (SAE) approximation for multipolar interactions is an open
problem. This would bring in a direct comparison of the relative importance of the
non-dipole effects vis a vis the multi-electron effects in a correlated electron-electron
interaction dynamics as well as the influence of the nuclear vibrations in molecular dy-
namics.
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Abbreviations

• TDSE Time-Dependent Schrödinger Equation

• SAE Single Active Electron Approximation

• SFA Strong-Field Approximation

• KFR Keldysh Faisal Reiss Theories

• PPT Peremolov, Popov, and Terentent’eV Tunneling Ionization Model

• ADK Ammosov, Delone, and Krainov Tunneling Ionization Model

• ATI Above-the-Threshold Ionization

• MPI Multi-Photon Ionization

• REMPI Resonant Multi-Photon Ionization

• BSI Barrier-Suppression Ionization

• HHG High Harmonic Generation

• LOPT Lowest Order Perturbation Theory

• PT Perturbation Theory

• TAn n
th order Taylor Multipole Expansion Approximation

• SBAn nth order Rayleigh Multipole Expansion Approximation employing the
spherical Bessel functions

• PES Photoelectron Energy Spectrum

• PAD Photoelectron Angular Distribution

• Up Ponderomotive Energy or Ponderomotive Potential

• Ip Ionization Energy or Ionization Potential
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