• Login
    View Item 
    •   Repository Home
    • Journal Articles
    • Department of Pure and Applied Sciences
    • View Item
    •   Repository Home
    • Journal Articles
    • Department of Pure and Applied Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Preclinical Toxicity Study of Intrathecal Administration of the Pain Relievers Dextrorphan, Dextromethorphan, and Memantine in the Sheep Model

    Thumbnail
    View/Open
    Awadh 4.pdf (283.2Kb)
    Date
    1999
    Author
    Samuel J. Hassenbusch
    William C. Satterfield
    Tamara Lee Gradert
    Awadh W. Binhazim
    Gabi Ahad
    Maryam Mokhtarzadeh
    Steven J. Schapiro
    Richard Payne
    Metadata
    Show full item record
    Abstract
    Objectives To determine the toxicity window for the continuous intrathecal administration of dextrorphan, dextromethorphan, and memantine via an implanted delivery pump. Materials and Methods Using 48 sheep with programmable continuous intrathecal infusion systems we determined the behavioral, motor, neurological, and histopathological changes produced by a 43-day continuous infusion study of dextrorphan, dextromethorphan, and memantine dissolved in 0.9% NaCl. Daily doses of each N-methyl-D-aspartate (NMDA) antagonist were 0.013, 0.051, 0.203, 0.510, 0.811, and 2.533 mg/kg/day, flow rates ranged from 13.25 ml/day to 0.051 ml/day at a concentration of 10 mg/ml. Control animals received saline in the range of 7.9985 ml/day to 1 ml/day. Conclusions Infusion of saline in the control animals produced no behavioral or motor changes. However, infusion of dextrorphan, dextromethorphan, and memantine at the higher doses (> 0.051 mg/kg/day) produced dose-dependent negative behavioral, motor, and histopathologic changes as indicated by a series of nonparametric statistical analyses. The minimal toxic doses were dextrorphan dose 3, dextromethorphan dose 1 and memantine dose 1. This study suggests that continuous intrathecal infusion of dextrorphan, dextromethorphan, and memantine via an implantable pump system can cause significant toxicities at the higher doses studied.
    URI
    http://hdl.handle.net/123456789/5537
    Collections
    • Department of Pure and Applied Sciences

    Technical University of Mombasa copyright © 2020  University Library
    Contact Us | Send Feedback
    Maintained by  Systems Librarian
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Technical University of Mombasa copyright © 2020  University Library
    Contact Us | Send Feedback
    Maintained by  Systems Librarian