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Multipole expansion is a powerful technique used in many-body physics to solve dynamical problems involving cor-

related interactions between constituent particles. The Laplace multipole expansion series of the Coulomb potential

is well established in literature. We compare its convergence with our recently developed perturbative and analytical

alternative multipole expansion series of the Coulomb potential. In our working, we confirm that the Laplace and the

alternative analytical multipole expansion series are equivalent as expected. In terms of performance, the perturbative

alternative multipole expansion series underapproximate the expected results to some extent while the Laplace and the

analytical alternative multipole expansion series yield results which are relatively accurate but oscillatory in nature even

with a higher number of angular momentum terms employed. As a practical example, we have evaluated the Slater dou-

ble integrals for two-electron systems using the multipole expansion techniques and a mean field approximation. The

estimated results show that only spherical interactions are dominant while the higher-order interactions are negligible.

Our findings are likely to be useful in the treatment of the Coulomb potential in electronic structure calculations as well

as in celestial mechanics.

■✳ ■◆❚❘❖❉❯❈❚■❖◆

The Laplace multipole expansion series is established in the

works of Laplace and Legendre in their search for solutions

to the problem of attractions. The historical developments

that led to the derivation of the expansion series and the in-

troduction of the Legendre polynomials, for the first time, as

the coefficients used in the Laplace expansion are captured in

Laden’s thesis1. The Laplace multipole expansion has become

conventional knowledge in physics textbooks2 and it is quite

useful in solving the many-body physics problems in celestial

mechanics, quantum physics and chemistry, nuclear physics,

and condensed matter physics.

Naturally, the multipole expansion becomes convenient to

use in solving physical problems in 3D if expressed in the

spherical polar coordinates. This decomposes the problem as

a product of both radial and angular parts. The radial part can

be treated as a 1D case while the well defined angular algebra3

can be used to simplify the angular parts. Several studies have

employed multipole expansion techniques in the recent past in

solving physical problems of interest4–9.

In our alternative multipole expansion of the Coulomb

potential10,11, we stated that the Laplace multipole expansion

series of the Coulomb repulsion term is incomplete, and there-

fore inaccurate. Vaman clarified that both the Laplace and

the alternative multipole expansion are in deed equivalent12.

Since the Laplace expansion series is a single-index summa-

tion while the alternative method is a double-index summation

series, it becomes necessary to test the conditions for con-

vergence of the two methods. We also compare the accuracy

of the Laplace expansion method, relative to our perturbative

and analytical alternative multipole expansion methods, in es-

timating the expected results. We have seen in literature that

such a comparison, not exactly similar to the current study, is

reported in ref.13,14. Comparison of different methods allows

characterization of relative accuracy and capabilities, which

is quite instrumental in guiding application13. This is partic-

ularly important given the fact that the alternative multipole

expansion has already been successfully employed in deter-

mining the electronic structure for neutral atoms15,16.

■■✳ ❚❍❊❖❘❨

The Coulomb repulsion potential term can be expressed as

1

| r⃗i − r⃗ j |
=

1

r>

(

1−2xt̃ + t̃2
)− 1

2 (1)

which reduces to the Laplace multipole expansion series,

1

| r⃗i − r⃗ j |
=

1

r>

∞

∑
l=0

t̃ l Pl(x), (2)

where t̃ = r</r>, r> = max{ri,r j}, r< = min{ri,r j},

x = cosθ , with θ being the relative angle between the

position vectors r⃗i and r⃗ j, l are non-negative integers, and

Pl(x) are the lth order Laplace coefficients of t̃ l , also known

as the Legendre polynomials. It is important to note that the

form given by Eq. (1) is considered as the generating function

for the Legendre polynomials2,17.

In the alternative approach10,11, the multipole expansion of

the Coulomb potential

1

| r⃗i − r⃗ j |
=

1

r>

∞

∑
l=0

hl(t̃)Pl(x) (3)

can also be expressed in the basis of Legendre polynomials,
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where the coefficients

hl(t̃) =
(2l +1)√

1+ t̃2
j̃l(t̃), (4)

are a function of the spherical Bessel-like functions, j̃l(t̃),
which can be expanded in the perturbative polynomial form

as10,11

j0(t̃) = 1+∑
∞
k=1

(4k−1)!!
(2k)!!(2k+1)!!

(

t̃
1+t̃2

)2k

(5)

jl>0(t̃) = ∑
∞
k=0

(2l+4k−1)!!
(2k)!!(2l+2k+1)!!

(

t̃
1+t̃2

)l+2k

(6)

or analytically as a differential equation11

j̃l(t)= (−1)l t l

(2l +1)!!

[

1

t

d

dt

]l {
1

2t

[

(1+2t)l+ 1
2 − (1−2t)l+ 1

2

]

}

,

(7)

with

t =
ri r j

r2
i + r2

j

=
t̃

1+ t̃2
(8)

defined in terms of t̃ in this case.

The equivalence of Eqs. (2) and (3) shows that

t̃ l =
(2l +1)√

1+ t̃2

kmax→∞

∑
k=0

(2l +4k−1)!!

(2k)!!(2l +2k+1)!!

(

t̃

1+ t̃2

)l+2k

(9)

is an identity.

From the identity relation in Eq. (9), we can further infer

that:

∑
kmax→∞
k=0

(2l+4k−1)!!
(2k)!!(2l+2k+1)!!

(

t̃
1+t̃2

)2k

= (1+t̃2)l+ 1
2

2l+1
, (10)

j̃l(t̃) =
t̃ l

2l+1

√
1+ t̃2, (11)

j̃l(t̃) =
(

2l−1
2l+1

)

t̃ j̃l−1(t̃) (12)

j̃l(t̃) =
t̃ l

2l+1
j̃0(t̃) (13)

Using the relations given by Eq. (8), we have analytically

tested and confirmed the inferences given by Eqs. (10)-(11)

for the first two orders of the spherical Bessel-like functions

herebelow. The zeroth-order spherical Bessel-like function

simplifies to:

j̃0(t̃) =

√
1+2t −

√
1−2t

2t

=

√

1+ 2t̃
1+t̃2 −

√

1− 2t̃
1+t̃2

2t̃
1+t̃2

=

√
1+ t̃2

[√
1+2t̃ + t̃2 −

√
1−2t̃ + t̃2

]

2t̃

=

√
1+ t̃2 [(1+ t̃)− (1− t̃)]

2t̃
=
√

1+ t̃2

(14)

Likewise, the first-order spherical Bessel-like function sim-

plifies to:

j̃1(t̃) =− 1

3!!

d

dt

{

1

2t

[

(1+2t)
3
2 − (1−2t)

3
2

]

}

=
1

6t2

[

(1+2t)
3
2 − (1−2t)

3
2

]

− 1

2t

[

(1+2t)
1
2 +(1−2t)

1
2

]

=

√
1+ t̃2

6t̃2

[

(1+ t̃)3 − (1− t̃)3
]

−
√

1+ t̃2

2t̃
[(1+ t̃)+(1− t̃)]

=
√

1+ t̃2

[

1

t̃
+

t̃

3
− 1

t̃

]

=
t̃

3

√

1+ t̃2.

(15)

The use of the recurrence relations given by Eqs. (12) and

(13) can be useful in eliminating singularities associated with

the analytical expression of the spherical Bessel-like func-

tions, j̃l(t̃),
11 as t̃ → 0.

As a practical example, we use the Laplace and the alter-

native multipole expansion series, within a meanfield approx-

imation, to estimate the Slater double integrals F l(ri,r j)
18

F l
1s,nl(ri,r j) = ⟨t̃⟩l

∫ ∞

0
r2

i dri Rn,l(ri)Rn′,l′(ri)

×
[

1

ri

∫ ri

0
r2

j dr j Rn′,l′(r j)Rn,l(r j)+
∫ ∞

ri

r j dr j Rn′,l′(r j)Rn,l(r j)

]

(16)

for helium-like systems, where the higher-order terms involve

the exchange of angular momentum quantum number between

the s and the lth orbital. The optimization is based on the root

mean value of t,

⟨t⟩=
〈

t̃

1+ t̃2

〉

=
1

4π
√

2
, (17)

per solid angle, obtained by determining the root mean square

value of t scaled by 2π as given by Eq. (32) of ref.16. This,

consequently, yields

⟨t̃⟩= 5.6426216557×10−2. (18)

Unscreened hydrogenic radial orbitals are employed as the

trial wavefunctions in evaluating Eq. (16).

■■■✳ ❘❊❙❯▲❚❙

Our goal in this work is to test the convergence of the

Laplace and the alternative multipole expansion series and

also to compare the performance of both methods in esti-

mating the exact function given by Eq. (1). The spherical

Bessel-like functions, j̃l(t̃), used in the alternative multipole

expansion can be evaluated perturbatively as given by Eqs. (5)

and (6) or analytically as given by Eq. (7). Our calculations

for convergence and performance are computed both pertur-

batively and analytically.

In Fig. 1, we plot the convergence of the first two orders

of the Laplace functions, t̃ l , relative to the alternative multi-

pole expansion functions, hl(t̃), as given by Eq. (9). The do-

main 0 ≤ t̃ ≤ 1 has been chosen to coincide with the regime of
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convergence of the Laplace multipole expansion series. The

convergence tests should confirm the validity of the identity

relations given by the stated equation. Since hl(t̃) is an infi-

nite series function, it can be seen that only three terms (with

kmax = 2) of the summation series already yield reasonable

trend of convergence, albeit slowly. In subsequent figures,

we use h
kmax=2
l (t̃) as our best converged perturbative results.

From Eqs. (??)-(??), it can be seen that the divergence be-

tween the Laplace functions and the perturbative alternative

multipole expansions stems from the approximation of the

factor
√

1+ t̃2 → 1 as kmax → 0.

In Fig. 2a, we compare the convergence of the perturbative

results with the corresponding analytical, hl(t̃), functions and

the Laplace basis functions as given by Eqs. (9) and (11) for

the first six orders of l. As already shown in Fig. 1, except at

lower values of t̃, the perturbative basis functions do not agree

fully with the corresponding Laplace basis functions in all the

cases considered. As expected, the analytical basis functions,

on the other hand, show an excellent agreement with the cor-

responding Laplace basis functions. In Fig. 2b, we show the

relative deviation between the analytical and the Laplace basis

functions. The relative deviations are calculated as the abso-

lute difference between the analytical hl(t̃) and the Laplace

fl(t̃) = t̃ l functions divided by the Laplace functions. The ob-

served relative deviations can be attributed to numerical noise

as well as the divergences due to singularities in the analytical

function as t̃ → 0.

Because of the slow convergence of the perturbative func-

tions, it became of importance to test the performance of the

expansions in approximating the value of the analytic func-

tion given by Eq. (1) for various values of t̃ across the angular

spectrum. The performance results are summarized in Fig. 3

for all values of x = cosθ . For lower values of t̃, fewer an-

gular momentum values are necessary for convergence. For

t̃ = 0.75, reasonable convergence is obtained with lmax = 10.

The perturbative expansion on the other hand converges faster

with fewer values of lmax and kmax, although the expected re-

sults are underapproximated to some extent using this approx-

imation. In particular, complete convergence for the perturba-

tive expansion is obtained using lmax = 5 and kmax = 2 only.

As t̃ → 1, a higher number of angular momenta are neces-

sary for convergence if the Laplace or the analytical multipole

functions are used. In Fig. 4, we show that for t̃ = 1 conver-

gence of the expected function is not yet achieved even with

lmax = 30 for the Laplace and the analytical multipole expan-

sion. It can also be observed in Fig. 4 that as the angular

momenta increases, the period and the amplitude of oscilla-

tion of the Laplace and the analytical multipole expansion re-

sults reduces. The perturbative expansion, on the other hand,

is converged with less angular momenta and shows remark-

able stability in the approximation of the expected function.

The perturbative results offer the possibility to isolate features

that are dependent on the lower order terms of the multipole

expansion of the Coulomb potential.

The equivalence between the Laplace and the analytical

alternative multipole expansion methods provides a wider

choice of techniques to use when dealing with the Coulomb

repulsion term. The Laplace basis functions appear simpler,
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FIG. 1. (Color online) Comparison of the functions (a) f0(t̃) = 1 and

h0(t̃) = f
kmax

0 (t̃) and (b) f1(t̃) = t̃ and h1(t̃) = f
kmax

1 (t̃) , summed up

to the maximum value (kmax), plotted using left and right hand side of

Eq. (9) respectively. The black solid line corresponds to the Laplace

basis functions, t̃ l .

in comparison with the analytical functions, but the underly-

ing difficulty lies in the uncertainty of r> and r< variables. In

the analytical expansion, on the other hand, it is not neces-

sary to distinguish between the r> and r< variables because

they are treated on an equal footing. Additionally, as already

shown in references15,16, the correlated term becomes separa-

ble in the alternative multipole expansion within some mean-

field approximation making it quite favourable to use for com-

putations.

As a practical example, we have compared the Slater

integrals18 for the 1s− nl interacting states estimated using

the Laplace and the lowest-order perturbative alternative mul-

tipole expansion series for two electron systems as expressed

in Eq. (16). The results are presented in table I. The cal-

culations have been done using unscreened hydrogenic radial

wavefunctions. As expected the analytical alternative multi-

pole expansion yields results equivalent to the Laplace multi-

pole expansion results. The lowest-order perturbative alterna-

tive multipole expansion results are slightly less by a constant

factor. From the results presented in the table, it is evident that

the higher order multipole interactions are negligible and only

become important when the lower order interactions vanish.
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FIG. 2. (Color online) (a) Comparison of the six functions of

fl(t̃) = t l , hl(t̃) = f̃
kmax

l
(t̃) with the value kmax = 2, and the analytical

hl(t̃) = f̃l(t̃), plotted using left and right hand side of Eq. (11) re-

spectively. The solid and the dash-dot lines represent the perturbative

and the analytical hl(t̃) functions, as given by Eqs. (5) - (7), while

the dashed lines represent the Laplace basis functions, fl(t̃) = t̃ l , re-

spectively. (b) The relative deviation given as the absolute difference

between the analytical hl(t̃) and the Laplace fl(t̃) = t̃ l functions di-

vided by the Laplace functions.

F l 1s−nl Laplace Perturbative

F0 1s-1s 0.6250Z 0.6240Z

F1 1s-2p 4.5409×10−3 Z 4.5337×10−3 Z

F2 1s-3d 8.8323×10−6 Z 8.8183×10−6 Z

TABLE I. Comparison of Slater integrals for the 1s− nl interacting

states evaluated using Eq. (16) for the Laplace and the lowest-order

perturbative alternative multipole expansion of the Coulomb repul-

sion term. The calculations have been done using the unscreened

hydrogenic radial wavefunctions.

■❱✳ ❈❖◆❈▲❯❙■❖◆

The convergence as well as the performance of the Laplace

multipole expansion of the Coulomb potential, in comparison

with our recently developed alternative multipole expansion

series, is investigated in this study. We have confirmed that

the Laplace and the analytical alternative multipole expansion

series are indeed equivalent and offer a higher degree of ac-
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 x 

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 g
(x

)

(a)
g(x)
gL
L= 0(x)

gk
L= 0(x)

gL
L= 1(x)

gk
L= 1(x)

gL
L= 5(x)

gk
L= 5(x)

gL
L= 10(x)

gk
L= 10(x)

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
 x 

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 g
(x

)

(b)
g(x)
gL(x)
g0
l (x)

g1
l (x)

g2
l (x)

g50
l (x)

FIG. 3. (Color online) Convergence of the Laplace and the pertur-

bative alternative multipole expansion series in comparison to the

expected function g(x, t̃) = (1−2xt̃ + t̃2)−
1
2 given by Eq. (1) , at

t̃ = 0.75, as a function of: (a) the angular momenta L with kmax = 2

and, (b) kmax with Lmax = 10. The black solid line is the expected

curve. The Laplace functions are denoted by dashed lines in (a) and

gL in (b).
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FIG. 4. (Color online) Convergence of the Laplace and the per-

turbative alternative multipole expansion series in comparison to

the expected function g(x, t̃) = (1−2xt̃ + t̃2)−
1
2 given by Eq. (1) ,

at t̃ = 1.00, as a function of the angular momenta (Lmax = 10 and

Lmax = 30) with kmax = 2. The black solid line is the expected curve.

The Laplace functions are denoted by gL
L while the perturbative func-

tion by gk
L. The logarithmic scale has been used for clarity.
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curacy if a larger lmax is used in the approximation. The per-

turbative alternative multipole expansion, on the other hand,

converges with a much lower value of lmax and kmax and is sta-

ble against oscillations in results as t̃ → 1 but the converged

results underapproximate the expected results to some extent

at all angles. The stability of the perturbative results may be

useful in isolating physically meaningful features even with

less angular momenta in converged results.

❉❆❚❆ ❆❱❆■▲❆❇■▲■❚❨ ❙❚❆❚❊▼❊◆❚

All the data generated in the work are embedded as figures

in the manuscript.
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