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Abstract. In this paper, we classify the fuzzy subgroups of the group
G = Zp1 × Zp2 × · · · × Zpn where p1, p2, · · · , pn are distinct primes and
n ∈ Z+. We develop an algorithm for counting the distinct fuzzy subgroups
of the group G using the criss-cut counting technique. This is achieved by
using the maximal chains of subgroups of G and the equivalence relation
given by Murali and Makamba in their research papers on equivalent fuzzy
subgroups.
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1. Introduction

The group G = Zp1
× Zp2

× · · · × Zpn
, for distinct primes p1, p2, · · · , pn and

n ∈ Z+, is a cyclic group since it is isomorphic to the cyclic group Zp1p2···pn
. We

will often use p1p2 · · · pn to denote the group Zp1 × Zp2 × · · · × Zpn . Fuzzy group
theory has a lot of application in different fields ranging from computer science,
electrical engineering to medicine. Fuzzy subgroups are usually uncountably many,
even for finite groups. In the recent past, many researchers have been classifying
fuzzy subgroups. The classification problem in fuzzy subgroups has grown to be
a branch that has many interesting challenges, since there are different notions of
equivalence. In [6], Murali and Makamba saw the importance of classifying fuzzy
subgroups when they wrote: “one of the most interesting problems in fuzzy group
theory is to classify fuzzy subgroups up to some unique invariants of the underlying
group”.

The concept of a fuzzy set was first introduced by Zadeh [17] in 1965 and thereafter
Rosenfeld [10] followed by introducing the concepts of fuzzy subgroupoids and fuzzy
subgroups. Fuzzy subgroups have recently been studied by, among others, [4, 5, 8,
13], thus extending the work done by the earlier authors like Das in [1] and Sherwood
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in [14]. R. Sulaiman and A.G. Ahmad [15] worked on the the particular case of the
group Zp1×Zp2×Zp3×Zp4×Zp5×Zp6 where p1, p2 · · · , p6 are distinct primes. Using
the equivalence relation of [15], the authours [2] and [3] generalized these results to
the group Zp1

×Zp2
×· · ·×Zpn

. M. Tărnăuceanu in [16], using a different equivalence
relation from [15], also worked on fuzzy subgroups of Zp1

×Zp2
×· · ·×Zpn

. A. Sehgal,
S. Sehgal and P. K. Sharma in [12], used the equivalence relation of [16] to count the
fuzzy subgroups of the p-group Zpm ×Zpn . The authors [11] and [3], also worked on
the number of fuzzy subgroups of a finite cyclic group using the equivalence relation
of [16]. Murali and Makamba in [4] gave a different equivalence relation from both
[15] and [16], which proved to be stronger than the other two. Thus their equivalence
gives more distinct (non-equivalent) fuzzy subgroups for most finite groups.

We begin by giving some fundamental concepts, definitions and propositions that
will be necessary in this paper. The number of maximal chains of subgroups of the
finite abelian group G = Zp1 × Zp2 × · · · × Zpn has already been established by,
among others, O. Ndiweni [8]. Using the equivalence relation as defined by Murali
and Makamba in [4] and their criss-cut counting technique [7], we then classify the
fuzzy subgroups of the finite abelian group G = p1p2 · · · pn and n ∈ Z+. In [5],
Murali and Makamba worked on the equivalence classes of fuzzy subgroups of G but
using a different counting approach called the cross-cut counting in [7]. However,
they did not completely give the total number of distinct fuzzy subgroups for the
group G, but merely focussed on certain types of keychains. Our goal in this paper
is therefore to extend their work, using the criss-cut counting technique to establish
the number of distinct fuzzy subgroups for the group G.

Note that we often use the term maximal chains of G to mean maximal chains of
subgroups of G.

2. Preliminaries

Since our counting is anchored on maximal chains, we look at some important
concepts related to the maximal chains of a group G. A chain of subgroups of G is
maximal if no new subgroups can be inserted in the chain.

O. Ndiweni in [8], worked on the number of maximal chains of finite abelian
groups and gave the following results in Theorem 2.1.

Theorem 2.1 ([8]). The group Zp1
n1 × Zp2

n2 × · · · × Zpm
nm , p′is distinct primes

and n′is ∈ Z+, has
(n1 + n2 + · · ·+ nm)!

n1!n2! · · ·nm!
=

(
m∑
i=1

ni

)
!

m∏
i=1

ni!

maximal chains.

From Theorem 2.1, we can deduce that the group Zp1
× Zp2

× · · · × Zpn
has

(1+1+···+1)!
1!1!···1! maximal chains where (1 + 1 + · · ·+ 1) and (1!1! · · · 1!) are respectively

a sum and product of n terms. We state this as

Proposition 2.2. The group Zp1
× Zp2

× · · · × Zpn
has n! maximal chains.

Let I = [0, 1] be the unit interval of real numbers with the usual ordering and let
X be a non-empty set. A fuzzy subset of X is characterized by a function µ : X → I.
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µ is called the membership function and µ(x) is the degree of membership of the
element x to the fuzzy subset of X defined by µ.

Definition 2.3. Let X be a non-empty set. The support of µ, denoted by supp (µ),
is defined as supp(µ) = {x ∈ X : µ(x) > 0}.

Example 2.4. Let X = {65, 70, 82, 94, 76, 88} be the set of Calculus I test scores
for six University of Fort Hare students. Define a fuzzy set µ on X as

{(65, 0), (70, 0.52), (82, 0), (94, 0.68), (76, 0.76), (88, 0.9)}.
Then supp(µ) = {70, 94, 76, 88}.

Definition 2.5 ([4]). Two fuzzy subsets µ and ν of X are said to be equivalent,
denoted µ ∼ ν, if and only if

(i) for all x, y ∈ X, µ(x) > µ(y) if and only if ν(x) > ν(y),
(ii) µ(x) = 0 if and only if ν(x) = 0.

Clearly this relation is an equivalence relation on IX and it coincides with equality
of sets when restricted to 2X .

Remark 2.6. The condition µ(x) = 0 ⇐⇒ ν(x) = 0 implies that the supports of
µ and ν are equal.

Proposition 2.7 ([4]). If µ ∼ ν, then |Im(µ)| = |Im(ν)|.

Definition 2.8 ([10]). Let G be a group. A fuzzy subset µ of G is said to be a fuzzy
subgroup of G, if, for all x, y ∈ G,

(i) µ(xy) ≥ min{µ(x), µ(y)},
(ii) µ(x−1) ≥ µ(x).

Murali and Makamba in [6] worked on the number of distinct fuzzy subgroups of
the group Zpn × Zqm obtaining the results in Propositions 2.9 and Theorem 2.10.
Note that two fuzzy subgroups of a group G are distinct, if they are non-equivalent
in terms of the Murali and Makamba equivalence.

Proposition 2.9 ([6]). The number of distinct fuzzy subgroups of Zpn × Zq is[
2n+1+1

1∑
r=0

2−r
(
n

r

)(
1

r

)]
− 1, n ≥ 1

More generally

Theorem 2.10 ([6]). The number of distinct fuzzy subgroups of Zpn × Zqm is[
2n+m+1

m∑
r=0

2−r
(
n

r

)(
m

r

)]
− 1, n ≥ m.

3. Distinct fuzzy subgroups of the group Zp1 × Zp2 × · · · × Zpn

To achieve our objective of counting the fuzzy subgroups of p1p2 · · · pn, we list
all maximal chains of each group first, thereafter the number of distinct fuzzy
subgroups is computed using the criss-cut method of [7] and [9]. We briefly explain
the technique below.
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Remark 3.1. The order of listing our maximal subgroup chains does not matter
and so does not alter the number of distinct fuzzy subgroups. Thus we can start
the counting from any chain in the list and proceed in any order. Therefore we
number our chains here according to the order in which we consider the chains in
our counting.

Now let G be a group. From the list of the maximal subgroup chains, suppose
our first chain is

0 ⊆ H1 ⊆ H2 ⊆ · · · ⊆ Hn = G, (3.1)

By [4], the chain (3.1) contributes 2n+1 − 1 distinct fuzzy subgroups of G. Let our
next maximal chain be

0 ⊆ J1 ⊆ J2 ⊆ · · · ⊆ Jn = G, (3.2)

such that for some i, Ji 6= Hi where i ∈ {1, 2, · · · , n− 1}. This new subgroup Ji is
called a distinguishing factor of the maximal chain. The number of distinct fuzzy
subgroups of G contributed by the chain (3.2) is given by Proposition 3.2.

Proposition 3.2 ([9]). The number of distinct fuzzy subgroups of G contributed by

a maximal subgroup chain with a distinguishing factor is equal to 2n+1

2 = 2n for
n ≥ 2.

Suppose in our counting process, we encounter a maximal subgroup chain 0 ⊆
K1 ⊆ K2 ⊆ · · · ⊆ Kn = G, such that {Ki,Kj}, i 6= j, is a pair of subgroups in this
chain. Moreover, suppose as a pair, the two subgroups have not appeared in any
previous chain. We say such a chain has a new pair or distinguishing pair.

Proposition 3.3 ([9]). In the process of our counting distinct fuzzy subgroups, a
maximal subgroup chain that has no single distinguishing factor but has a distinguishing

pair, contributes 2n+1

22 = 2n−1 new distinct fuzzy subgroups of G for n ≥ 4.

A new triple of subgroups in a maximal chain is called a distinguishing triple and

such a chain contributes 2n+1

23 new distinct fuzzy subgroups. This counting argument
continues inductively and can be generalised in Proposition 3.4.

Proposition 3.4. In the process of counting distinct fuzzy subgroups, if a maximal
subgroup chain of length n + 1, other than the first chain, has no distinguishing
(m − 1)-tuple, but has a new m-tuple of subgroups that has not been used as a

distinguishing m-tuple previously, then that chain contributes 2n+1

2m new distinct fuzzy
subgroups of G, n+ 1 > m.

For further details of the counting technique, see [9]. Example 3.5 illustrates the
criss-cut counting technique.

Example 3.5. For i = 1, 2, 3, we have the groups Zp1
, Zp1

×Zp2
and Zp1

×Zp2
×Zp3

,
for distinct primes p1, p2, p3, whose maximal chains are respectively listed below.
The powers of 2 on the extreme right are the numbers of distinct fuzzy subgroups
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contributed by the maximal chains.

p1 ⊇ 0 : 22 − 1
p1p2 ⊇ p1 ⊇ 0 : 23 − 1

p1p2 ⊇ p2 ⊇ 0 : 22

p1p2p3 ⊇ p1p2 ⊇ p1 ⊇ 0 : 24 − 1

p1p2p3 ⊇ p1p2 ⊇ p2 ⊇ 0 : 23

p1p2p3 ⊇ p1p3 ⊇ p1 ⊇ 0 : 23

p1p2p3 ⊇ p1p3 ⊇ p3 ⊇ 0 : 23

p1p2p3 ⊇ p2p3 ⊇ p2 ⊇ 0 : 23

p1p2p3 ⊇ p2p3 ⊇ p3 ⊇ 0 : 22.

Then Zp1
, Zp1

× Zp2
and Zp1

× Zp2
× Zp3

have respectively 22 − 1, 23 − 1 + 22 and
(24 − 1) + 4 · 23 + 1 · 22 distinct fuzzy subgroups.

For i = 4, the group Zp1×Zp2×Zp3×Zp4 has the maximal chains and contributed
distinct fuzzy subgroups as listed below.

p1p2p3p4 ⊇ p1p2p3 ⊇ p1p2 ⊇ p1 ⊇ 0 : 25 − 1 p1p2p3p4 ⊇ p1p3p4 ⊇ p1p3 ⊇ p1 ⊇ 0 : 24

p1p2p3p4 ⊇ p1p2p3 ⊇ p1p2 ⊇ p2 ⊇ 0 : 24 p1p2p3p4 ⊇ p1p3p4 ⊇ p1p3 ⊇ p3 ⊇ 0 : 23

p1p2p3p4 ⊇ p1p2p3 ⊇ p1p3 ⊇ p1 ⊇ 0 : 24 p1p2p3p4 ⊇ p1p3p4 ⊇ p1p4 ⊇ p1 ⊇ 0 : 23

p1p2p3p4 ⊇ p1p2p3 ⊇ p1p3 ⊇ p3 ⊇ 0 : 24 p1p2p3p4 ⊇ p1p3p4 ⊇ p1p4 ⊇ p4 ⊇ 0 : 23

p1p2p3p4 ⊇ p1p2p3 ⊇ p2p3 ⊇ p2 ⊇ 0 : 24 p1p2p3p4 ⊇ p1p3p4 ⊇ p3p4 ⊇ p3 ⊇ 0 : 24

p1p2p3p4 ⊇ p1p2p3 ⊇ p2p3 ⊇ p3 ⊇ 0 : 23 p1p2p3p4 ⊇ p1p3p4 ⊇ p3p4 ⊇ p4 ⊇ 0 : 23

p1p2p3p4 ⊇ p1p2p4 ⊇ p1p2 ⊇ p1 ⊇ 0 : 24 p1p2p3p4 ⊇ p2p3p4 ⊇ p2p3 ⊇ p2 ⊇ 0 : 24

p1p2p3p4 ⊇ p1p2p4 ⊇ p1p2 ⊇ p2 ⊇ 0 : 23 p1p2p3p4 ⊇ p2p3p4 ⊇ p2p3 ⊇ p3 ⊇ 0 : 23

p1p2p3p4 ⊇ p1p2p4 ⊇ p1p4 ⊇ p1 ⊇ 0 : 24 p1p2p3p4 ⊇ p2p3p4 ⊇ p2p4 ⊇ p2 ⊇ 0 : 23

p1p2p3p4 ⊇ p1p2p4 ⊇ p1p4 ⊇ p4 ⊇ 0 : 24 p1p2p3p4 ⊇ p2p3p4 ⊇ p2p4 ⊇ p4 ⊇ 0 : 23

p1p2p3p4 ⊇ p1p2p4 ⊇ p2p4 ⊇ p2 ⊇ 0 : 24 p1p2p3p4 ⊇ p2p3p4 ⊇ p3p4 ⊇ p3 ⊇ 0 : 23

p1p2p3p4 ⊇ p1p2p4 ⊇ p2p4 ⊇ p4 ⊇ 0 : 23 p1p2p3p4 ⊇ p2p3p4 ⊇ p3p4 ⊇ p4 ⊇ 0 : 22.

So Zp1
×Zp2

×Zp3
×Zp4

has (25−1)+11 ·24+11 ·23+22 distinct fuzzy subgroups.

A similar approach gives us the following number of distinct fuzzy subgroups for
i = 5, 6, · · · , 10;
i = 5: Zp1

× · · · × Zp5
: (26 − 1) + 26 · 25 + 66 · 24 + 26 · 23 + 22.

i = 6: Zp1 × · · · × Zp6 : (27 − 1) + 57 · 26 + 302 · 25 + 302 · 24 + 57 · 23 + 22.
i = 7: Zp1

×· · ·×Zp7
: (28−1)+120·27+1191·26+2416·25+1191·24+120·23+22.

i = 8: Zp1
× · · · × Zp8

: 29 − 1 + 247 · 28 + 4293 · 27 + 15653 · 26 + 15653 · 25 +
4293 · 24 + 247 · 23 + 22.

i = 9: Zp1 × · · · ×Zp9 : 210 − 1 + 502 · 29 + 14608 · 28 + 88234 · 27 + 156190 · 26
+ 88234 · 25 + 14608 · 24 + 502 · 23 + 22.

i = 10: Zp1
×· · ·×Zp10

: 211−1+1013·210+47840·29+455192·28+1310354·27+
1310354 · 26 + 455195 · 25 + 47840 · 24 + 1013 · 23 + 22.

These results are presented in Table 3.1. From this table, we observe that the
number of distinct fuzzy subgroups of the group Zp1

× Zp2
× · · · × Zpn

has n terms
of powers of 2. The first term is 2n+1− 1, where n+ 1 is the length of each maximal
subgroup chain of G and the last term is 22. We get a fascinating pattern from
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the respective coefficients of 2n+1 − 1, 2n, 2n−2, · · · , 22 for n = 1, 2, · · · , 8 in the
expression for the number of distinct fuzzy subgroups of G.

Table 3.1. Fuzzy subgroups of Zp1
× Zp2

× · · · × Zpn

n Number of fuzzy subgroups

1 3 = 22 − 1
2 11 = (23 − 1) + 22

3 51 = (24 − 1) + 4 · 23 + 22

4 299 = (25 − 1) + 11 · 24 + 11 · 23 + 22

5 2163 = (26 − 1) + 26 · 25 + 66 · 24 + 26 · 23 + 22

6 18731 = (27 − 1) + 57 · 26 + 302 · 25 + 302 · 24 + 57 · 23 + 22

7 189171 = (28 − 1) + 120 · 27 + 1191 · 26 + 2416 · 25 + 1191 · 24 + 120 · 23 + 22

8 2186603 = 29 − 1 + 247 · 28 + 4293 · 27 + 15653 · 26 + 15653 · 25 + 4293 · 24 +
247 · 23 + 22

...
...

k 2k+1 + [(k − 1)t1 + 2t2] · 2k + [(k − 2)t2 + 3t3] · 2k−1 − 1 + · · · +
[(2tk−2 + (k − 1)tk−1] · 23 + 22

This pattern gives a form of the Pascal triangle, which we present in Figure 3.1
and simply call it the Pascal triangle. The sum of the i-th row of the triangle gives
the number of maximal chains of the group Zp1

× · · · × Zpi
. The terms of this

Pascal triangle can be calculated from Figure 3.2. This helps us to investigate a
pattern of getting the coefficients in each column (each position). The first and last
terms of the triangle are each equal to 1, and indeed the triangle is symmetric about
the vertical line consisting of 1, 4, 66. We explain the algorithm used to generate
the Figure 3.1. We consider the group G6 = Zp1 × · · · × Zp6 to explain how the
number of distinct fuzzy subgroups can be obtained using the previous level group
G5 = Zp1

× · · · × Zp5
. The second term of G6 in Figure 3.1 is given by 5 · 1 + 2 · 26,

where 5 = 6 − 1, 1 and 26 are the first and second terms of G5 respectively while
2 represents the position of the term. The second term of G7 = Zp1 × · · · × Zp7 is
6 · 1 + 2 · 57. Similarly 6 = 7 − 1, 1 and 57 are the first and second terms of G6

respectively while 2 is similarly the position of the term. This pattern can be seen
in the other second terms for Zp1

× · · · × Zpi
as shown in Figure 3.2. So generally,

the second term of Zp1
× · · · ×Zpn

can be expressed as (n− 1)t1 + 2t2, where t1 = 1
and t2 are the first and the second terms respectively of Gn−1 = Zp1 × · · · × Zpn−1

in Figure 3.1.
For the third term of G6, we have 4 ·26 + 3 ·66 where 4 = 6−2, 26 and 66 are the

second and the third terms of G5 in Figure 3.1 while 3 represents the position of the
term (in this case, the third term). A similar trend is seen in G7 with 5 · 57 + 3 · 302
implying 5 = 7− 2, 57 and 302 the second and third terms of G6 and 3 the position.
Therefore, the general formula for the third term of Zp1 ×· · ·×Zpn is (n−2)t2 + 3t3
where t2 and t3 are the second and the third terms of Gn−1. Continuing this pattern,
we see the k-th term of G = Zp1

×· · ·×Zpn
is given by [n− (k− 1)]tk−1 +ktk where

tk−1 and tk are the (k−1)-st and k-th terms respectively of Gn−1 = Zp1
×· · ·×Zpn−1

.
294
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n
1 1
2 1 1
3 1 4 1
4 1 11 11 1
5 1 26 66 26 1
6 1 57 302 302 57 1
7 1 120 1191 2416 1191 120 1
... . .

.
. .
.

. .
.

. .
.

. .
.

. .
.

. .
.
· · ·

Figure 3.1. Pascal’s triangle for coefficients of terms of fuzzy
subgroups of Zp1 × Zp2 × · · · × Zpn

n 2nd coeff 3rd coeff 4th coeff
3 4 = 2 · 1 + 2 · 1
4 11 = 3 · 1 + 2 · 4 11 = 2 · 4 + 3 · 1
5 26 = 4 · 1 + 2 · 11 66 = 3 · 11 + 3 · 11 26 = 2 · 11 + 4 · 1
6 57 = 5 · 1 + 2 · 26 302 = 4 · 26 + 3 · 66 302 = 3 · 66 + 4 · 26
7 120 = 6 · 1 + 2 · 57 1191 = 5 · 57 + 3 · 302 2416 = 4 · 302 + 4 · 302
...

...
...

...
Figure 3.2. Coefficient columns of Zp1

× Zp2
× · · · × Zpn

4. Conclusion

This paper has discussed the number of distinct fuzzy subgroups of the group
Zp1
× Zp2

× · · · × Zpn
. With the discovery of the triangle presented in Figure 3.1,

one can find the number of distinct fuzzy subgroups for a given cyclic group G. As
further research, one would want to write an algorithm that automatically generates
the triangle for any given n, and add it into existing computer algebra systems like
GAP, Magma and MuPAD in MATLAB. This will form a basis for another paper
in the future.
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