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Electron—electron interactions and correlations form the basis of
difficulties encountered in the theoretical solution of problems
dealing with multi-electron systems. Accurate treatment of the
electron—electron problem is likely to unravel some nice
physical properties of matter embedded in the interaction. In
an effort to tackle this many-body problem, a symmetry-
dependent all-electron potential generalized for an n-electron
atom is suggested in this study. The symmetry dependence in
the proposed potential hinges on an empirically determined
angular momentum-dependent partitioning fraction for the
electron—electron interaction. With the potential, all atoms are
treated in the same way regardless of whether they are open
or closed shell using their system specific information. The
non-relativistic ground-state ionization potentials for atoms
with up to 103 electrons generated using the all-electron
potential are in reasonable agreement with the existing
experimental and theoretical data. The effects of higher-order
non-relativistic interactions as well as the finite nuclear mass
of the atoms are also analysed.

1. Introduction

The theory of quantum many-body systems is an effective
theoretical structure and solvable approach of understanding
the collective behaviour of the interacting many-particle
systems [1]. The solution of the many-electron problem is
important because electrons determine the physical properties
of materials and molecules. Many-body physics is heavily
applicable in condensed matter, Bose-Einstein condensation
(BEC) and superfluidity, quantum chemistry, atomic, molecular,
nuclear physics, as well as quantum chromodynamics.

Electron correlation energy, among the interacting many-body
particles, is defined as the difference between the exact non-
relativistic energy eigenvalue of the electronic Schrodinger
equation and the energy of the single configuration state function
(CSF) approximation, commonly called the Hartree-Fock energy [2].
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Accurate description of electron—electron interaction remains a major challenge in atomic structure [ 2 |

calculations [2]. To meet this challenge, a number of different methods have been developed such as
the many-body perturbation theory (MBPT) [3], configuration interaction (CI) [4], density functional
theory (DFT) [5], coupled cluster theories and different kinds of variational methods [6]. Hylleraas-
type calculations [7] are an example of the variational methods in which the interelectronic distance
r12 is employed explicitly in the construction of the wave function resulting in the most accurate
eigenvalues, although computationally expensive.

A pseudopotential, or an optimized potential, is an effective potential used as an approximation
for the simplified description of complex atoms, molecules and other quantum systems. The use of
pseudopotentials was first introduced by Fermi [8]. Hellmann [9] subsequently developed a
pseudopotential model for atoms which has been extensively used in atomic scattering [10]. The use
of pseudopotential method in the many-body problems is computationally less expensive and has the
potential of revealing the underlying processes in the interaction dynamics.

In this work, a central screening potential in an independent-particle model introduced in our previous
papers [11-14], based on an alternative multipole expansion of the electron—electron interaction [15], is
extended to incorporate the expected symmetry dependence of the electron—electron interaction in the
Hamiltonian for an n-electron atom. The generalized all-electron potential developed in this work is
then used to evaluate the ground-state ionization potentials of atoms with up to 103 electrons.

Atomic systems have been chosen to test the validity and efficiency of the present method in predicting
experimental data. The atomic systems are not only useful as a playground for testing physical
approximations and numerical algorithms but also provide a basis for understanding complex systems
like molecules and condensed matter. Several theoretical studies have been undertaken on atomic
systems [16-19] with DFT methods widely adopted. Even though DFT method with local spin density
approximation (LSDA) and generalized gradient approximation (GGA) functionals have been used to
generate total and ionization energies which are in good agreement with experimental results for up to
86 electrons [17,18], further improvement in the description of atomic systems focusing on non-spherical
calculations and on advanced non-local correlation functional is recommended [17].

The symmetry-dependent all-electron potential suggested in this study naturally includes the non-
spherical terms of the multipole series expansion of the electron—electron interaction. In the present
method, we achieve total separability of the Hamiltonian of the many-electron atom and hence the
calculations can be considered to yield near-exact non-relativistic eigenvalues. Our ionization potential
results are compared with reported literature data, and with results generated using our previously
developed potential which was based on the classical partitioning of the electron—electron interaction
[13]. Besides the ionization potentials, we have also included analytically computed partitioning
fractions, electron screening parameters, effective nuclear charge, and the ratio of the effective nuclear
charge to the unscreened nuclear charge for selected atoms. The information from these additional
parameters could be useful in explaining the quantum observables in atomic, molecular and optical
physics. Unless explicitly stated, atomic units are used in this study.

2. Theory

The infinite nuclear mass non-relativistic Hamiltonian (in atomic units) of an n-electron system with a
nuclear charge Z is given by

n 2 7 n—-1 1
H= B 25— ] (2.1)

where the first term on the right corresponds to the kinetic energy of the ith-electron, the second term
corresponds to the interaction of the ith-electron with the nuclear charge, and the last term in the
summation corresponds to the interaction between the ith- and jth-electron. The second and the last
terms form the potential energy function of a bound n-electron system.

In our previous work [15], the binomial expansion and consequently, the multipole expansion of x,

k
K (21+1)
Xk = Pi(x), 2.2
,:evenzmdd(k—l)n(kHJrl)u 1) (2.2)

where | <k are both either even or odd non-negative integers and P;(x) are the Legender polynomials of
order I, are used to expand the Coulomb repulsion term. It was shown that the electron—electron
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interaction analytically simplifies to [15]
1 o0
Tri—r| (7 - Zr,r]x+r2 12— Z( ) (ri +r].2)_(1/2)_k (=2r; r]-x)k
j k=
(2.3)

= ir 1Ym
r—l—ﬂ;m;z]’r )Y (F) YT (7)),

where x = cos#, 6 is the angle between vectors r; and 7, the unit vector 7 specifies the angular coordinates
of vector r, Y7" are the spherical harmonics which have a correspondence relation with the Legendre
polynomials, and

k
bt 2k — l) 1’1'7‘]'
]1 ri, 1)) = Z D (k+1+1)! (rlz n r}2> (2.4)

k=11+42,..

are spherical Bessel-like functions. In the independent-particle approximation method, the potential
function can be given by

V(ri, 1j) = ——+ Z L P—

j#i =1

(2.5)

iS5y, *Z i Y R YF (),
j£i T’ + r
for the ith-electron of the many-electron atomic system. The coefficient 7, defines the ratio for
partitioning the electron—electron interaction energy. Conventionally, factor 1/2 which assumes equal
sharing of the Coulomb repulsion energy between the interacting electrons is usually preferred. The
interaction potential V(r; 7;) where the partitioning fraction is 1/2 can be completely separated by
minimizing it with respect to the spatial co-ordinates [13,20].

To obtain reasonable energy eigenvalues for the many-electron atoms, the radially dependent
classical partitioning fraction,

2
7

, 26
2+ rf (2:6)

Yiri, 15) =
was suggested in [12]. Unlike equal partitioning of the electron—electron interaction, the challenge with
the spatially dependent partitioning fraction is that it does not lead to a complete separability of the
single-electron potential. This introduces some uncertainties in the calculated energy eigenvalues. To
address the challenges associated with the radially dependent partitioning fraction, a symmetry-
dependent partitioning fraction [11,14] which depends, not on the radial coordinates, but on the local
orbital angular momentum value (I;) for the ith state of the system was suggested for two-electron
systems. We employed an empirical process [11] to obtain the symmetry-dependent partitioning
fractions used in the study.

In this paper, we extend the use of the symmetry-dependent partitioning fractions to derive the
single-electron potential for a generalized n-electron atom. The potentials developed in our previous
paper [13] and other related literature data are used in validating and calibrating the partitioning
fractions. Indeed, the success of the equal sharing of the electron—electron interaction potential for
spherically symmetric cases observed in [13] already hinted to a possibility of existence of such a
symmetry-dependent partitioning fraction. This hint was successfully utilized in coming up with a
symmetry-dependent partitioning fraction for helium atom [11,14].

In the empirical determination of the desired partitioning, it is argued that the two interacting electrons
share the electron—electron interaction energy, not on equal basis, but with the sharing fractions determined
by the proportion of each of their intrinsic energies [11]. The interacting electrons are assumed to be
exhibiting quantum harmonic oscillations, with each of their intrinsic energies given by

{1 + }hw 2.7)

where [; is a discrete quantum number corresponding to the orbital angular momentum of the harmonic
oscillator, 71 is Planck’s constant divided by 27, and w is the fundamental angular frequency of oscillations
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of the electrons. Consequently, the partitioning fraction corresponding to the ith-electron becomes
€i
€+ ¢ !

Y = (2.8)

which simplifies to the form given by equation (2.9). The empirical task is then reduced to the
determination of the explicit forms of §; and §; in equation (2.9).

In our working, we established that the symmetry-dependent partitioning fraction is system specific
and largely takes a general form which depends on the symmetry of the valence and active electrons. For
valence electrons with an orbital angular momentum value I, and an orbital angular momentum J; for the
ith electron, the partitioning fraction v, is empirically determined [14] to be

1+ 6
= 2.9
[ T 29)
where the parameters are given by
0 if;=0
and
L

respectively. The non-local parameter ;in equation (2.9) is accounted for by the valent subshell with [, being the
orbital angular momentum quantum number of the valent electron for the atom in its ground-state configuration.
With the suggested symmetry-dependent partitioning fraction, the lowest-order interaction potential

7 o(ri, 1j) *———i—Zy,

j#i rr + I’-
(2.12)

=5 D LA
_ 1 li ’
j#i (n 7’1'2 +7’]2

for the ith electron obtained by setting [ =k =0 in the approximation of the multipole electron-electron
interaction used in equation (2.5), can be minimized by differentiating it with respect to 7;

0

3, Volri ) =0, (2.13)

and equating the derivative to zero. Physically, this corresponds to enforcing an equilibrium condition

requiring the net force acting on the ith electron to vanish. This leads to the separation
1 YZ/i= Ty

24 r]-z Ti

(2.14)

of the entangled coordinates within the lowest-order spherical approximation.

Equation (2.14) and a further mean-field approximation of the spherical Bessel-like functions, given
by equation (2.4), are used to simplify equation (2.5). This yields the symmetry-dependent single-electron
multipole potential [14]

Imax—0 |
Vi) = > Y Vi), (2.15)
I=0 m=—

for the n-electron system where

Z-—(n-1 i (r, 1)/ Z —
Vg(n):—[ n m<]0(rrir]) /l(n )y;,]],
) = et o ) L2 -
R () R )
Rm,»/li(l",‘) nidi \Tj) 1Sy i\ )7
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The higher-order multipole potential terms, V{’;O(ri),

VZ/[(n—1)y,]

Ti
l/
Vi l,‘ — l]‘
e {’ ((u 1)+ 1))2’1}

® 2+1;+l,’ 2+ll+l]
: (ST N 2 18
XL ' eXp{ ((1i+1)(lj+1) 73| 5Ot O

VZ/1(n—T)y]

]
T

X &P [‘ <m) Z”‘]

(2L — 14+ 2)1[(L; + 1) (I; — 1+ 1)1
(2 -1+ 2)Z]21+3)

Viko(ri) = dm(n — 1)y, AP (jy(ri, 17)) Ny, [

(2.17)

= 4a(n — 1)y, Al(jy(ri, 7)) | Ny, 2

X

Bli,l,-+l Bm;,m]+rn/

emanating from the inner integral of the double integration (in space coordinates) are further evaluated
using Laplace transform method and hydrogenic radial wave functions

Ry (r) = Nnr,prZ’ exp (— %), (2.18)
as our trial functions. In equation (2.18), N,/ y are the normalization factors, n'=1'+land I' are the
principal and the orbital angular momentum quantum numbers of the hydrogenic trial functions
respectively. In equation (2.17), we have imposed the conditions I;=[;+1 and m;=m;+m in the
triangular relations of the angular momentum algebra. The angular factors Aj" arise from the angular
integral and can be evaluated with the help of the Wigner-3j symbols as

Al = Jy}j/yyi*y;"f da; x Jygffy;"YZ?/ do
(2.19)

:(fl)m(21i+l)(21+])(21f+1)(li ! lj)2<li " )2.

4ar 0 0 O m; m m;

In principle, the triangular relations allow [; =I; = I but the inclusion of /; = ; — I leads to divergences in the
Hamiltonian. This can be explained that the exchange of quantum numbers between the electrons is
mediated by the operator and can go only in one direction such that [;=1I; + 1.

Within the mean-field approximation, the multipole potential terms in equations (2.16) and (2.17) can
compactly be expressed as

[Z — (n = 1)wBYZ)/Z/[(n — 1) ]]

Vo(ri) = — -

m m Z
and ViLo(r) = (n — 1)y B(Z) CESA (2.20)

expl— (IZr/(; + 1)(l; — 1+ 1))]
X P ( /( rl'Jr] )( )) 8ll,lj+18m,,mj+mr
with the coefficient
Br(z)— @+2Ai-D [ 2z =2y
L -2 2\ —1+1 221)
(li+1—1+1) 2”‘Z+3Am<* (ri, 17)) |
212, —DZ AT T

The expectation values of the spherical Bessel-like functions,

(iriv ) = (4771\5)1 22k (Mlﬁ)k, (2.22)

e
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are approximated using a mean value of its argument, that is, the square root of the argument’s peak [ 6 |

value per solid angle. The higher-order multipole potentials V}"(r;) can then be added perturbatively,
as per equation (2.15), to increase the accuracy of the single-electron potential.

The summation of all orders of the multipole potential terms in equations (2.15) and (2.20) simplify to
a fully analytical single-electron potential function given by [21-24]

(Z-oa7)
V() =—-——, (2.23)
Ti

where the electron screening parameter, o7, dependent on the number of electrons #, orbital angular
momentum /;, and the angular momentum of the valent electrons in ground state I,, is evaluated as

VA Imax—00  +1

g =m-Nyie—m— > Y B'@
=Ty = =
(2.24)
expl— (Zr/(; + 1)(I; = 1+ 1))]
oL 2/ 1) I

Within the spherical approximation, the electron screening parameter simplifies to

Z
(n— 1)7’1,/

with the expectation value <}0> ~ 1.001591982 evaluated using equation (2.22).
Using the suggested symmetry-dependent all-electron potential given by equation (2.23), the one-
electron Hamiltonian,

of ~ (n— 1)y, (joi} (2.25)

hoo(i’,') = %12 + V(I",’), (226)

without the finite nuclear mass correction is defined. With the finite nuclear mass correction, the
Hamiltonian becomes

1
Mion

h(ri) = heo(1i) — oo (1), (2.27)
where 1/Miq, is the electron-atomic nuclear mass ratio.

The eigenvalue ¢, corresponding to a state with the quantum numbers o; ={n;,l;,m;} for an n-electron
atom can then be generalized as

€a = o (i (1)), (2.28)

where m/n refers to the proportion of non-vanishing integrals out of all the possible permutations. For
lithium, m/n=2/3 as was already shown in our previous paper [13]. In principle, the integer m can be
determined from the spin-allowed ground-state configuration of the atom, but constrained further by
other symmetry considerations. We have provided electronic supplementary material [25] showing how
the various values of m/n have been determined for up to n="7. For atoms with a higher number of
electrons, we have used an intuitive reasoning based on the arrangement of the systems in the periodic
table to determine the values of m/n [25]. A complete understanding of the symmetry relations for such
large systems is, however, still necessary. The ratio 1:m — 1 corresponds to the contribution of the direct
and exchange integrals involved in the evaluation of the energy of the system respectively. This shows
that, apart from helium and alkalis where the exchange integral has an equal weight with the direct
integral, the exchange contribution is greater in all the other atoms. Apparently, m has a maximum value
of 5 for noble gases regardless of the number of electrons present in the atom.

For comparison purposes, we have also included results calculated using our previously derived
lowest-order non-relativistic central potential [13]

[Zf (i, 1) /2(n — I°

V() = — rg -1 . ) (2.29)

where the expectation value,

27 3
(1)) 1= 22

6
25 T 52 15y, | OP22N), (230
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is approximately optimized by evaluating the integral using a trial function for hydrogenic system in [ 7 |

the 1s state.
Within the spherical approximation, the infinite nuclear mass energy eigenvalue, corresponding to
the principal quantum number #;, for the ith electron can be computed analytically using the relation

2
m L
n’ o 2n2’

Ga‘ =

(2.31)

where the screened effective nuclear charge Z.=Z — oy is evaluated using equation (2.25). This relation
can be seen to be similar to the one for hydrogen-like eigenvalues, but scaled with a system-dependent
factor m/n.

3. Results and discussions

We have developed a symmetry-dependent all-electron potential for an n-electron system defined by
equations (2.15) and (2.20). The potentials are used to calculate the ground-state ionization potentials
for n-electron atoms as shown in tables 2 and 3 with 2 <7 <103. Our results are compared with the
results of the central potential given by equation (2.29), density functional theory exchange correlation
(DFT-XC) calculations [17], and experimental reference data [26]. In generating our results, a B-spline
radial box of 600 B-splines, maximum radius 7,y =200, order k=10, and a nonlinear knot sequence is
used. Our results can also be evaluated analytically using equation (2.31), if the suggested all-electron
potential is restricted to the spherical terms only, by determining the nuclear screening parameters
and the effective nuclear charge.

In table 1, the partitioning fractions (P.F.), electron screening parameters (o), effective nuclear charge
(Zg), infinite nuclear mass non-relativistic ionization potentials (¢,) in eV, and the ratio of the effective
nuclear charge to the unscreened nuclear charge (Z./Z) are analytically computed, with a desk
calculator, within the spherical approximation for some atoms using equations (2.9), (2.25), and (2.31),
respectively. The ionization potentials are obtained using Koopman'’s theorem [27] except for helium
atom, which is determined by multiplying the energy eigenvalue by 4 and then subtracting —2.0, the
ground-state energy for helium ion, to get the binding energy for the 1s electron. The agreement with
the numerically evaluated results presented in tables 2 and 3 is excellent.

From table 1, we can observe that for a given symmetry, the charge screening effect, as measured using
0/Z =1—Zey/ Z ratio, is a slowly increasing function of nuclear charge for the neutral atoms. It can also be
seen that the effect of nuclear screening is strongly dependent on the partitioning fractions (P.F). The higher
the partitioning fraction, the higher the nuclear shielding effect, if nuclear charge is held constant. The
fraction o/Z is lower for s states and respectively higher for p, d and f states. Additionally, the variations
of the ionization potential in the periodic table can also be attributed to the symmetry scaling factor m/
n in equation (2.28), besides the principal quantum number of the valent electron.

Tables 2 and 3 show some numerically calculated non-relativistic ionization energies for n-electron
atoms using the present central lowest-order potential V., given by equation (2.29) and the
symmetry-dependent all-electron potentials in equations (2.15) and (2.20), evaluated by fixing jo(r;,
r)~1 for the lowest-order Vg,o term, and I =0 and I, =4 for the higher-order monopole V, and
multipole V), terms, respectively. We have also included the finite nuclear mass corrections in our
higher multipole order V., results. Our results are compared with the reference theoretical [17] and
experimental values [26]. The tables also contain the ground-state valent orbital, the energy deviation
(Ae) from the experimental values as well as the single-electron Hamiltonian scaling factor (m/n) for
each of the atoms, already introduced in equation (2.28), that have been determined [25] and used in
the present study. These scaling factors yield information on the relative importance of the exchange
integrals, arising from the permutation symmetry, in the evaluation of the energy eigenvalues. They
are also useful in explaining the shape of ionization potential curves as a function of the nuclear
charge Z in the periodic table of atoms.

The ionization energies have been obtained using Koopmans’ theorem [27], except for the
ground state of helium atom, which is evaluated as the difference between the total energy of helium
atom and the residual ion both in their ground states. The ground-state ionization energies calculated
using the present all-electron potential incorporating the multipole terms, without (V) and with the
finite nuclear mass correction (Vg,y,), as given by equations (2.15), (2.20), (2.26) and (2.27) are in fair
agreement with the reference values. We have also included the results generated using the lowest-
order central (Vo) and symmetry-dependent (V) non-relativistic potential as well as a higher-order
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ionization energy (eV)

atomic number (Z)

Figure 1. Non-relativistic atomic ionization energies for multi-electron atoms evaluated using various potentials in comparison with
experimental results [26].

monopole spherical (V) potential. With these additional potentials, the effects of the dominant lowest-
order interaction, the central potential, the symmetry-dependent potential, the higher-order spherical
and non-spherical interactions, and of the finite nuclear mass corrections can be investigated.

The central potential (Ven) given by equation (2.29) and the symmetry-dependent potential (V{ )
interaction terms are both lowest-order non-relativistic interaction terms of the multipole interaction
potential, with the difference between them being the nature of the partitioning fraction (y,) used for
each case. In one case, a radial partitioning fraction is used, while in another case, a symmetry-
dependent partitioning fraction is used in the treatment of the electron—electron interaction terms. The
results between the two corresponding potentials compare well qualitatively but the quantitative
difference increases with the atomic nuclear charge (Z). The discrepancy between the results
generated by the lowest-order multipole potentials can be attributed to the approximation involved in
the central potential given by equation (2.30). Since the calculations involving the symmetry-
dependent partitioning fraction can be considered to be exact, without any approximation used, their
values can be considered to be reliable within the non-relativistic regime, subject to the validity of the
use of both the partitioning and scaling fractions suggested in this work.

Indeed, if the higher-order interactions and finite nuclear mass corrections are included into the
symmetry-dependent single-electron Hamiltonian, there is some slight improvement in the agreement
of our results with the experimental values for all the multi-electron atoms. The trend of the
ionization energies in the periodic table is correctly predicted by our all-electron potential. The
quantitative agreement with experimental values is better for few-electron atoms but decrease with
higher Z-values. Some major discrepancies are, however, observed between our evaluated results and
the experimental results for some of the multi-electron atoms across the Z spectrum. For example, our
potential is unable to explain why the ionization energy of oxygen atom is lower than that of nitrogen
atom. The source of such discrepancies is not quite clear but some can be attributed to the dominant
role played by the relativistic effects to some extent, especially for high Z atoms. It is of desirable
interest to include the effects arising from the relativistic and other higher-order interactions in our
future investigation.

Figures 1 and 2 graphically represent the results contained in tables 2 and 3. In figure 1, our present
results are compared with the experimental results derived from literature. It is evident from the graphs
that all sets of results are in reasonable agreement up to Z =20. Beyond this point, the central potential
results break down. This is because central potentials average results around the /=0 values, for
equivalent principal quantum numbers, leading to bigger deviations for higher I values. The nuclear
charge Z amplifies such deviations. The symmetry-dependent potential, on the other hand, follows a
pattern which is unique for every I value and for every atom. The symmetry-dependent results yield a
reasonable prediction for the experimental values, but significant deviation from experiment persists
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Figure 2. Non-relativistic atomic ionization energies for multi-electron atoms evaluated using our symmetry-dependent higher-order
multipole potential, with finite nuclear mass corrections (V_{fam}), in comparison with DFT-XC (LSDA and GGA) [17] and
experimental results [26].
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Figure 3. lonization energies deviations, that is the absolute (Abs. Dev. = [Vzm — Exp] in eV) and relative deviations, from the
experimental results for the multi-electron atoms as a function of atomic number (2). The relative deviations, multiplied by a
factor of 5, are obtained by dividing the absolute deviation with the experimental ionization energies. Our higher-order multipole
potential results with finite nuclear mass corrections are considered to be more realistic for the calculations of the deviations.

even for this potential. It can be noticed that the influence of higher multipole corrections, beyond the
lowest-order non-relativistic potential, is small.

In figure 2, our calculated results incorporating higher-order multipole potentials and finite nuclear
mass corrections are compared with DFT calculations with LSDA and GGA exchange correlation
functions [17] and with the experimental [26] results. Evidently, both sets of the DFT-XC spin
polarized results compare well with experimental results, but our calculated results are also in
reasonable agreement, and even better for some many-electron atoms like helium, lithium, beryllium,
boron, neon, phosphorus and a few others. Our method is, nevertheless, not directly comparable with
the DFT, making it a challenging task to explain the disparity between them.

Figure 3 shows the absolute and relative energy deviations of our results from the experimental
values. The absolute energy deviation is obtained by subtracting the experimental results from our
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higher-order multipole potential (V) results with finite nuclear mass corrections. The relative [ 16 |

energy deviations, on the other hand, are obtained by dividing the absolute deviations with the
experimental values. Our relative deviations have been multiplied by a factor of 5 to fit on the same
scale with the absolute deviation. Positive deviation implies that our binding energies for the
respective orbitals are lower than the experimental values while negative deviation implies that our
binding energies are higher. From the figure, it can be observed that the deviations show a high
degree of correlation between them. It is also apparent that both deviations increase with atomic
number (Z) to some extent. In general, the disparities between our present results, the experimental
results, and both sets of DFT results point to the need for further research incorporating relativistic
and other higher-order corrections in order to clarify the uncertainties existing in both theory
and experiment.

4. Conclusion

We have generalized the symmetry-dependent all-electron potential for n-electron atoms. With
this potential, all atoms are treated in the same way regardless of whether they are open- or closed-
shell using only their system specific information. The scaling fractions (m/n) used have been
derived for up to seven-electron systems and extended empirically using symmetry arguments for
the rest of the n-electron systems [25]. In this study, the permanent (symmetric form of Slater
determinants) expansion of single-electron spin-orbitals is used to express the wave function.
This may be contrary to the fundamental postulates of quantum mechanics but, in a way, similar to
the spatial expansion of the singlet states of helium atom using the Slater determinants. Our
motivation for using such an expansion of the wave function was necessitated by the separability
of the interaction potential leading to a form of a Hamiltonian for non-interacting fermions.
The performance of the potential is tested against our previously developed central potential, and
the literature DFT-XC, calculations in reproducing benchmark experimental results. The contributions
of the lowest-order and higher-order non-relativistic interaction potentials in the various ionization
energies are evaluated. The potential yields reliable ground-state ionization energies relative to
the literature data. The major advantage of the derived potential is that it leads to a completely
separable Hamiltonian for the many-electron atoms. This eliminates the need for self-consistent field
iterations usually employed in other commonly used theoretical methods like the Hartree-Fock,
CI and DFT. It hinges further on the premise that any two interacting electrons can exchange
their relative position coordinates without exchanging their spin degrees of freedom. The
suggested potential has a possibility for further improvement by incorporating the relativistic and
other higher-order interactions.
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