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Electron-electron correlation forms the basis of difficulties encountered in many-body physics.
Accurate treatment of the correlation problem is likely to unravel some nice physical properties of
matter embedded in the correlation. In an effort to tackle the many-body problem, an empirically
determined symmetry-dependent partition fraction for the electron-electron interaction energy be-
tween two interacting states of helium atom is suggested in this study. Using the partition fraction
and the lowest-order approximation of the multipole series expansion of the electron-electron inter-
action, a simple parameter-free pseudopotential for a two-electron system is derived. The ground-
state, singly and doubly excited state non-relativistic energies generated by the pseudopotential are
in reasonable agreement with literature values.

I. INTRODUCTION

Helium atom and helium-like ions are the simplest many-body systems containing two electrons which interact
among themselves in addition to their interaction with the nucleus. The two-electron systems are therefore the ideal
candidates for studying the electron correlation effects.
Several theoretical approaches have been employed in the past in dealing with the electron correlation problem.

Some of the approaches include the variational Hylleraas method [1, 2], coupled channels method [3], the configuration
interaction method [4], explicitly correlated basis and complex scaling method [5]. At present only the Hylleraas
method, which includes the interelectronic distance as an additional free co-ordinate, yields the known absolute
accuracy of the groundstate energy of the helium atom [6].
Configuration interaction methods have also been proved to be accurate but they are quite expensive computa-

tionally. To overcome the computational challenges especially for really large systems, single active electron (SAE)
methods become advantageous, although some approximations are necessary in developing the model potentials [7, 8].
Reasonably accurate eigenvectors and energies can be generated using the model potentials. The major limitation
of SAE approximations is the inability to explain multiple electron features like double excitation, simultaneous ex-
citation and ionization, double ionization, and innershell transitions. However, progress is being made towards the
realization of these features.
The development of the single particle potentials is an active field of study taking different approximations [9]

like the independent particle approximation (IPA), multi-configurational Hartree-Fock (HF) [10], density functional
theory (DFT) [11], random phase approximation (RPA) [12], and many others.
Hartree [13], Zener [14] and Slater [15–17] contributed immensely in the pioneering development and use of single

particle potentials by adopting central screening potentials. The Hartree-Fock screening potentials are determined by
using self-consistent variational methods [13]. Zener and Slater, on the other hand, respectively suggest the use of
variationally [14] and empirically determined [15–17] atomic shielding constants which incorporate the effect of the
other electrons in the effective nuclear charge on a single electron. The effective nuclear charge is then used in the
solution of the Schrödinger equation for a hydrogenic system. The use of the central potentials is justified by the
understanding that when more accurate energy levels are obtained, the wavefunctions obtained from the resulting
boundary conditions will closely approximate the exact values when solving the atomic and molecular problems [15].
In this paper, we extend the concept of the effective nuclear charge further by suggesting a screening constant that
depends on the local orbital angular momentum quantum number, l, of the single-particle electron and the nuclear
charge, Z.
In our previous works [18–20], we have developed a theory for resolving the electron-electron interaction term with

a goal of making the Hamiltonian separable. The separable Hamiltonian makes it possible to reduce the complex
system to a one particle problem. The theory advanced requires the use of a suitable partition fraction for the
results to be accurate. In reference [18, 19], a classical partition fraction is suggested, but the method requires the
use of an approximation to make the Hamiltonian separable. The classical partition function results into a central
pseudopotential yielding reliable energies for excited states of n−electron atoms for 2 ≤ n ≤ 12, although it performs
poorly for the groundstate energies. The equal partitioning of the electron-electron interaction energy, on the other
hand, results into an exactly separable Hamiltonian. It is reasonably successful in predicting the non-relativistic
groundstate energy for helium atom, within the lowest-order approximation adopted, due to its spherical symmetry in
the groundstate. The equal partitioning, however, results into accidental degeneracy for states with the same principal
quantum number and is quite poor in predicting energies for non-spherical states [18].
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In this work, a symmetry-dependent partition fraction for helium atom is suggested. With the partition fraction,
the corresponding lowest-order non-relativistic Hamiltonian is completely separable resulting into an independent
particle problem. For spherically symmetric (l = 0) states, the equal partitioning is preserved with the suggested
symmetry-dependent partition fraction. For non-spherical (l 6= 0) states, the partition fraction is suggested to depend
on the l-value so that the accidental degeneracy associated with equal partitioning is removed [18]. We obtain reliable
results for the groundstate, excited states, and the doubly excited states of helium atom using the present method.

II. THEORY

The non-relativistic Hamiltonian, H , of a two-electron system with a nuclear charge Z, in atomic units, is given by

H =
1

2

[

p2
1
+ p2

2

]

− Z

[

1

r1
+

1

r2

]

+
1

|r1 − r2|
(1)

where the first term correspond to the sum of the kinetic energies of each of the two electrons, the second term to
the sum of the interactions between each of the electrons and the nucleus, and the last term to the electron-electron
repulsion between the two electrons. The second and the last term form the potential energy function of a bound
two-electron system.
In our previous work [20], it was shown that the electron-electron interaction simplifies to

1

|ri − rj |
=

1
√

r2i + r2j

(2)

in the lowest-order approximation. This is in agreement with the formulation used in the hyperspherical method [21].
In the independent particle method, the single-electron potential function

V (ri, rj) = −
Z

ri
+ ηli

1
√

r2i + r2j

(3)

for the ith−electron in a two-electron system can be completely separated [18] as

V (ri) = −
Z − σ

ri
. (4)

where

σ = ηli
3

√

Z

ηli
(5)

is the screening (or shielding) constant emanating from the effect of the other electron. The separarability is achieved
by imposing the condition

∂V (ri, rj)

∂ri
= 0 (6)

which ensures that the potential energy function in Eq. (3) is minimum.
From Eq. (4), it can be deduced that the nuclear charge screening parameter due to one electron on the other

electron can be determined exactly within the lowest-order approximation. The charge screening can be seen to
depend on the nuclear charge and the angular momentum of the active electron. This work therefore modifies the
existing theory of charge screening [22] by introducing symmetry dependence in it.
Factor ηli in equations (3) and (4) corresponds to a partition fraction which ensures the sharing of the electron-

electron interaction energy between the two interacting electrons as a function the orbital angular momentum of the
ith electron. We have seen in our previous work [18, 19] that the equal sharing (ηli = 1/2) of the electron-electron
interaction is reasonably successful in approximating, to the lowest-order, the groundstate ionization potential of
helium atom because of its spherical symmetry.
In this work, a symmetry-dependent partition fraction

ηli =
1 + δli
2 + δli

(7)
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for helium atom, with the parameter

δli =
li

√

li (8)

empirically determined, is suggested. With the partition fraction, the corresponding lowest-order non-relativistic
Hamiltonian is completely separable leading to a single-electron problem. The partitioning can be explained on the
basis that the two electrons with share the electron-electron interaction energy as a fraction of their intrinsic energies.
The electrons are assumed to be quantum harmonic oscilators whose intrinsic energies are given by

ǫi =

[

l̃ +
1

2

]

~ω (9)

where l̃ is a discrete quantum number, ~ is the Planck’s constant divided by 2π, and ω is the angular frequency. With
this argument, the partition fraction can be seen to take the form

η =
ǫi

ǫi + ǫj
=

1 + δli
2 + δli + δlj

(10)

where δli and δlj are local and non-local symmetry (l) dependent terms respectively. For helium atom, the non-local
term is assumed to be zero and the local term is empirically determined as indicated in Eq. (8).
With the saparable potential given by Eq. (4), the single-electron Hamiltonian,

h(ri) =
p2i
2

+ V (ri), (11)

for helium atom is defined. The eigenvalues of a two-electron system can then be evaluated as [18]

〈Eαα′〉 =

{

4 εαα′ if α = α′

εαα + εα′α′ if α 6= α′ (12)

where εαα = 〈h(ri)〉 is the eigenvalue of a single electron orbital. Factor 4 in Eq. (12) arises from both exchange and
permutation symmetry consideration for states with α = α′. For other cases where α 6= α′, the inner electron sees the
unscreened nuclear charge Z while the outer electron sees the screened nuclear charge as a result of the inner electron.
The energy eigenvalue, corresponding to the principal quantum number n, for the inner electron can therefore be
computed as a hydrogenic eigenvalue

εn = −
Z2

eff

2n2
(13)

with unscreened nuclear charge Zeff = Z whereas that for the outer electron can also be computed in a similar way
but with a screened nuclear charge Zeff = Z − σ. For a helium atom with one electron considered to be in the 1s
state and the other electron occupying an excited state α′, ε1s is equal to the energy eigenvalue, E1s = −2.00000, for
the helium ion in its ground state since the inner electron is unshielded.

III. RESULTS AND DISCUSSIONS

We have developed a single electron potential for helium atom given by equation (4). The pseudopotential is used to
calculate the 1snl eigenvalues for helium atom as shown in table I for angular momenta of up to lmax = 7. The results,
calculated using Eq.(13), are presented for the first five principal quantum numbers for each angular momentum value.
The results generated with the derived pseudopotential are in reasonable agreement with the references values [5] at

larger values of n and l as expected. The singlet and triplet values presented in table I are the reference experimental
[23] results. We can observe that the present results are close to the triplet values while the reference theoretical data
[5] are close to the singlet values. It is also clearly visible in the present results that the accidental degeneracy observed
in our previous results [18], where states having the same principal quantum numbers but different angular momentum
quantum numbers have the same energies, is completely removed. This is a consequence of the symmetry-dependent
interaction potential used in our suggested method.
The largest discrepancy between the present results and the literature values are in the lowest lying spherically

symmetric states. The discrepancy seems to stem from the equal partitioning of the electron-electron interaction for
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State Present Trip. Sing. Ref.

L = 0 -2.91031 - -2.90394 -2.90372
-2.18189 -2.17528 -2.14601 -2.14597
-2.08084 -2.06871 -2.06128 -2.06127
-2.04547 -2.03652 -2.03359 -2.03358
-2.02910 -2.02262 -2.02118

L = 1 -2.13481 -2.13320 -2.12387 -2.12384
-2.05991 -2.05809 -2.05516 -2.05514
-2.03370 -2.03233 -2.03107 -2.03106
-2.02156 -2.02055 -2.01991 -2.01991
-2.01497 -2.01421 -2.01383

L = 2 -2.05555 -2.05565 -2.05563 -2.05562
-2.03124 -2.03129 -2.03128 -2.03127
-2.01999 -2.02002 -2.02002 -2.02001
-2.01388 -2.01390 -2.01390 -2.01389
-2.01020 -2.01021 -2.01021

L = 3 -2.03110 -2.03126 -2.03126 -2.03125
-2.01991 -2.02000 -2.02000 -2.02000
-2.01382 -2.01389 -2.01389 -2.01389
-2.01015 -2.01020 -2.01020 -2.01020
-2.00777 -2.00781 -2.00781

L = 4 -2.01999 -2.02000 -2.02000 -2.02000
-2.01388 -2.01389 -2.01389 -2.01388
-2.01020 -2.01020 -2.01020 -2.01020
-2.00781 -2.00781 -2.00781
-2.00617 -2.00617 -2.00617

L = 5 -2.01396 -2.01389 -2.01389 -2.01388
-2.01026 -2.01020 -2.01020 -2.01020
-2.00785 -2.00781 -2.00781 -2.00781
-2.00620 -2.00617 -2.00617
-2.00502 -2.00500 -2.00500

L = 6 -2.01031 -2.01020 -2.01020 -2.01020
-2.00789 -2.00781 -2.00781 -2.00781
-2.00624 -2.00617 -2.00617 -2.00617
-2.00505 -2.00500 -2.00500
-2.00417

L = 7 -2.00793 -2.00781 -2.00781 -2.00781
-2.00626 -2.00617 -2.00617 -2.00617
-2.00507 -2.00500 -2.00500 -2.00499
-2.00419
-2.00352

TABLE I: Some numerically calculated eigenvalues using the present method potential versus the experimentally determined
triplet and singlet values [23] and the non-relativistic reference values for helium atom [5]

.

the l = 0 states. In ref. [18], it is evident that the classical partitioning of the electron-electron interaction, which is
dependent on the radial distance ri, yields better aggreement with the excited spherical states.
In table II, we present the eigenvalues of autoionizing levels of helium relative to the groundstate energy. The

eigenvalues have been evaluated using equation (12).
From table II, one can observe that our ns2 1S states and 2s2p 1P state results compare well with ref.1 values while

np2 1S states results are lower compared to the reference values. This observation forms a complementary relationship
with table I results in that singly excited states with s symmetry are poorly described while doubly excited states
with s symmetry are well described by the present potential. Conversely, single excited states with p symmetry are
well described while doubly excited states with p symmetry are underestimated by the present potential.
The non-relativistic excitation energies of various autoionizing states, presented in table III, have also been deter-

mined using the derived pseudopotential. The results are compared with known experimental results [25].
The excitation energies calculated using the present method are in fair agreement with the literature values except

for the 2s2 and 2p2 states where our present results are higher because the exchange effects. It is important to note
that the present method can neither resolve the singlet and triplet states of the autoionizing levels nor the S and D
states for the npn′p autoionizing levels.



5

State Present ref1 ref2

2s2 1S -0.7275 -0.7333 -0.7778
3s2 1S -0.3233 -0.3265 -0.3535
4s2 1S -0.1818 -0.1838 -0.2010
5s2 1S -0.1164 -0.1177 -0.1303
6s2 1S -0.0808 -0.0817 -0.0908
7s2 1S -0.0593 -0.0600 -0.0675
2s2p 1P -0.6819 -0.6587 -0.6931
2p2 1S -0.5392 -0.6314 -0.6219
3p2 1S -0.2396 -0.2933 -0.3174
4p2 1S -0.1348 -0.1671 -0.1832
5p2 1S -0.0862 -0.1075 -0.1210
6p2 1S -0.0599 -0.0749 -0.0857
7p2 1S -0.0440 -0.0551 -0.0641

TABLE II: Some numerically calculated eigenvalues (in atomic units) using the present potential versus the literature values[24]
for helium autoionizing levels. Ref.1 results were generated using DFT calculations while ref.2 are reference data reported in
the paper for comparison purposes.

State Present (eV) Sing. Exp. (Sing.) Trip. Exp. (Trip.)

2s2 59.19 57.95 57.8
2s2p 60.43 60.13 60.1 58.22 58.3
2s3s 63.18 63.09 62.9 62.68
2s4s 64.14 64.25 64.11
2s5s 64.59 64.71 64.65
2p2 64.31 63.00 62.2
2p3p 63.75 64.28 63.85
2p3d 63.87 64.19 64.21
2p4p 64.97 64.73 64.55
2p4d 64.53 64.69 64.70

TABLE III: Some numerically calculated excitation energies (in eV) for the autoionizing states of helium atom using the present
pseudpotential versus the singlet (Sing.) and triplet (Trip.) theoretical [21] and experimental [25] literature values.

The present method is advantageous in that, unlike other methods tackling the electron correlation effects, there is
no use of self consistent approximations or iterations involved in the treatment of the electron-electron interaction and
all the effects including electron exchange and correlation are evaluated exactly within the lowest-order approximation
given by Eq.(2). The validity of the current method lies in the suggested partition function which in turn determines
the quality of the results obtained.
Within the non-relativistic solution framework for helium atom, the present results are in good comparison with

the literature values and can be deemed to be reliable, especially for non-spherical (l 6= 0) symmetry states. For states
with spherical (l = 0) symmetry, the method is only accurate for the groundstate and autoionizing states while it
overstimates the binding energies of the singly excited states.
With the symmetry-dependent partition fraction, the separation of the correlated electron-electron interaction is

exactly solved within the lowest-order approximation. For helium atom, we are led to a conclusion that the lowest-
order non-relativistic ground state energy is −2.9103. This implies that the accurate value of −2.9037 can only be
achieved if the higher-order non-relativistic corrections are incorporated into the Hamiltonian of helium atom. This
premise will be a subject of further investigation in future.

IV. CONCLUSION

Accurate treatment of the electron-electron interation is the key to resolving uncertainties in many-body physics.
Many existing methods for solving the many-body problems are quite expensive computationally. In this work, a
symmetry-dependent partition function for helium atom is suggested. A simple separable parameter-free Hamiltonian
for helium atom yielding reasonable and degenerate non-relativistic eigenvalues is consequently obtained. The problem
reduces to an effective potential approach with a charge screening parameter exactly known within the lowest-order
approximation. The singly and doubly excited state energies obtained by the separable potential compare well with
literature values. It is hoped that the suggested method will go along way in improving the solutions of the complex
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multi-electron problems.
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