
Int. J. Emerg. Sci., 2(4), 619-631, December 2012

ISSN: 2222-4254

© IJES

Challenges in Achieving Interoperability in Distributed

Systems: a Survey of Literature

Kennedy O. Ondimu, Geoffrey M. Muketha

Department of Computer Science and Information Technology,

Mombasa Polytechnic University College, P. O. Box 90420-80100 Mombasa, Kenya,

Department of Computer Science, Masinde Muliro

University of Science and Technology, P.O. Box 190-50100 Kakamega, Kenya,

k.ondimu@gmail.com, gimuchiri@gmail.com

Abstract. As need for collaboration and distributed systems among organizations

increase, there is the challenge of different standards in almost all communication

issues. This calls for scrutiny of systems used by different organizations or units of

the same organization in an effort to achieve distributed systems. Available

literature on this topic is limited and there is lack of an assessment framework to

determine which system has attained what level of interoperability. We discuses

four strategies or approaches used in achieving some degree of interoperability, as

well as issues in distributed systems interoperability. This paper conducts a

detailed literature review on interoperability in distributed systems and then

proposes a ranking framework to assess interoperability. Currently XML is widely

used implementing systems that need to communicate with others. However

technical challenges such as semantics, security and legacy databases, together

with many managerial issues remain a hindrance to achieving complete

interoperability.

Keywords: Interoperability, Distributed systems, Legacy Systems, XML.

1 INTRODUCTION

Most of today’s software systems are complex consisting of smaller components which

are systems on their own right. The system could also be part of a more complex system

consisting of independently managed and operated components that depend on other

systems outside the administrative control of their owners, developers and users [7].

The components could also have different structures and designed for different

purposes.

Kennedy O. Ondimu, Geoffrey M. Muketha

Unlike traditional systems, such systems display emergent behaviour, a behaviour

that cannot be localized to a single component but instead produce effects that arise

from the cumulative effect of contributions from all involved components. The

emergent behaviours can lead to the success or failure of the distributed systems. Such

systems are referred to as systems of systems by some authors and as distributed

systems by others; the rest of this paper uses “distributed systems” to mean the same.

A distributed system is defined as one in which different components use messages

only to communicate and coordinate actions between themselves in a networked

environment [5]. Its characteristics include; lack of a global clock and autonomy of

individual components. When a component fails, it does not have to affect the

relationship between those that remain functional. The internet and intranets are the best

examples of distributed systems, though this can apply to even home environments

[21].

A distributed system consists of sub-systems, which in turn consist of components.

Sub-systems focus on local problems but communicate with other sub-systems in the

distributed environment when need be, while components are mainly concerned with

transformation.

Interoperability is defined as the ability of a collection of communicating entities to

share specified information and operate on it according to shared operational semantics

in order to achieve a specified purpose in a given context [2]. It is achieved when all

components and sub-systems in distributed systems work together seamlessly to

achieve a set objective. In software engineering, interoperability is defined as the ability

to exchange functionality and interpretable data between two software entities [8]. In

this case interoperability is divided into Application and semantic interoperability.

Application interoperability addresses communication issues normally handled by the

TCP/IP communication protocols. Semantic interoperability deals with data

interpretation (schemas) and knowledge representation and exploitation by means of

ontologies and agents [22].

In this paper, we suggest a ranking framework to assess interoperability in

distributed systems. This is an extension of [15], in which the extent to which a

particular distributed system has achieved interoperability is not addressed. However,

only six of the eight interoperability issues proposed in [15] are used in this case since

motivation and funding are closely related..

This paper addresses the following four research questions:

RQ1. What are the current strategies/approaches and technologies in distributed

systems interoperability?

RQ2. What are the issues in distributed systems interoperability?

RQ3. How can we rank the interoperability of a distributed system in such a way as

to be able to tell the level of interoperability attained?

International Journal of Emerging Sciences 2(4), 619-631, December 2012

621

The rest of this paper is structured as follows. Section 2 presents findings of RQ1,

Section 3 presents findings of RQ2, and Section 4 discusses the findings of RQ1, RQ2

and suggests an interoperability ranking framework for distributed systems. Section 5

gives the conclusion of the paper, implications, and future directions.

2 KEY STRATEGIES, APPROACHES AND TECHNOLOGIES FOR

MANAGING INTEROPERABILITY

A common strategy for achieving interoperability is to have a common format/Standard

to ease future interpretation, open database; independence of hardware, operating

system and programming languages. It is important to adhere to some standard which

makes it easy for others to predict and understand your database. Such databases are

easy to access even in the face of technological change since the model is known. The

database needs to be open, given that it will be accessed by others whom you do not

even know yet. Some information needs to be communicated throughout the distributed

system such as semantics of a database. Tight coupling ideal at the constituent level

does not support interoperability; however some loose coupling is encouraged between

constituent sub-systems [4]. The following four examples are typical efforts towards

achieving interoperability.

2.1 e-Government initiatives

Two strategies used in implementing e-government in Europe and USA have been

outlined by [8]. Governments have set up frameworks that ensure interoperability by

setting specifications and policies to be used between its agencies and service delivery

to the public. The specifications and policies are revised and updated frequently to keep

up with developments in technological change and the environment. The frameworks

consist of specifications and policies covering interconnectivity, data integration, e-

service access and content management. The standards include semantic

interoperability that address data interpretation, and knowledge representation. To

remain current provisions have been made for revisions and updates. The United

Kingdom’s e-GIF uses a Technical standard catalogue which is revised and updated

every six months for this purpose. Other Governments with a similar approach are

France, Germany, and Denmark. The European Union has its own framework IDABC

(Interoperable delivery of European e-Government services to public Administrations,

Business and Citizens). Unlike the individual governments, IDABC is only a guideline

that does not prescribe any specific architecture or standard catalogue. It mainly deals

with issues not addressed in the individual government frameworks to ensure

interoperability throughout the Union. This approach is akin to tight coupling within the

constituents with loose coupling between constituents.

Kennedy O. Ondimu, Geoffrey M. Muketha

2.2 Enterprise architecture

Enterprise architecture [8] goes beyond technology to also address organizational issues

such as human resources, business location, and motivation among others, which really

define an enterprise. The architecture aims at aligning the IT solution with the

enterprise business processes and goals. In USA, FEA (Federal Enterprise Architecture)

sets out five reference models for government business transactions. The models define

business, performance, data, service component and technical reference. All

government funded projects are required to adhere to the FEA model(s) to qualify for

funding by the OME (Office of Management and Budget). In this case there is clear

motivation for compliance else funding will be withdrawn (a big stick and money) [11].

2.3 Navigator

Navigator [1] provides a framework that helps organizations improve their sub-systems

towards attaining distributed systems interoperability. It is based on the paradigm that

future SOS will not have an overall architecture standard since the constituent will just

evolve. Even those which start with an overall architecture and standards will not last

long due to evolution of the constituents that lead to emergence. The approach

underpins a number of aspects, the first one being establishing a common understanding

for the overall goal for the sub-system or the vision, and the role of every constituent

towards achieving it. Secondly is to establish how the constituent sub-systems affect or

influence each other and thirdly have a common understanding (semantics) of the data

interchanged between the constituents. Finally, agreements on aspects that affect

constituents’ relationships that needs to be managed.

2.4 Web Services

Web services are self-contained and modular applications that can be described,

published, located and invoked over the web. Web services use established open

standards and infrastructure such as Extensible Markup Language (XML) over Hyper

Text Transfer Protocol (HTTP), Simple Object Access Protocol (SOAP), Web Services

Description Language (WSDL) and Universal Description, Discovery and Integration

(UDDI). Using WSDL, the service provider describes itself giving information such as

network location, data types, binding information and operations. The service

description is sent to the service registry, where a service requester can find it and use

the service description information to locate and bind with the service provider so as to

use the service. XML acting as an interface hides the implementation details of the

service, allowing communications between different software and hardware platforms.

This also facilitates inclusion of legacy systems in any new service [19; 20].

XML, is a technology that facilitates different programs to bridge the gaps between

themselves [11]; a registered trademark of Massachusetts Institute of Technology. It is

International Journal of Emerging Sciences 2(4), 619-631, December 2012

623

closely related to HTML in the aspects of displaying and hyper linking content.

However it goes beyond to provide structural and semantic information about the data

involved; a feature described as metadata. XML is a metalanguage; an open text-based

Markup language that is applicable both in the front and back-end processing. Its

derivatives or closely related products are the most widely used applications in the web

environment that include XUL, ebXML and RDF among others.

The ability of XML to describe data content using metadata makes it possible to

retrieve and process data from legacy systems. The order of fields, their length etc is

available from the metadata. It is also flexible on naming conventions that allows later

resolving in case of concurrent development before linking up. XML offers a content-

based structure as opposed to format-based structure only that makes it impossible to

work with legacy and heterogeneous databases.

XML is widely recognized by industry leaders such as Microsoft, Netscape and

IBM among others as standard for data interchange [16] It specifies strict rules or

protocols that have to be consistently applied across interested parties to facilitate

interoperability. The protocols called Document Type Definitions (DTD) are platform

and database independent making XML highly scalable [13]. The DTD is the vital link

between the data file given to XML processor and the application. XML is therefore a

standards based implementation that makes sure that there is interoperability in a

distributed environment. Data mining in distributed health care systems is an example

where XML facilitates interpretation by the receiver who may not necessarily be using

the format as the source [23].

There are two approaches to dealing with legacy systems. The first one is to

develop a set of XML standards and re-write or redesign all its legacy databases to

comply. The other alternative is to convert the existing database to XML structure and

standards. In the first approach, the users will have to agree on the data that will be

shared and its definitions (taxonomy) before embarking on developing the actual data,

its structures and standards [10].The conversion approach is cheaper though temporary

by employing tools such as wrappers and mediators.

 3 ISSUES IN INTEROPERABILITY

The following eight issues have been identified as a hindrance or challenge in the

adoption and implementation of interoperability [15]. They include Ownership,

funding, Legacy systems/databases, security, emergent behaviour, motivation, tools,

and ambiguity in terminologies. Each individual issue is discussed below.

3.1 Ownership

Ownership refers to possession, authority or control and responsibility over something

[2]. It is not possible for any individual or organization to possess a distributed system.

By definition each proprietary constituent sub-system could be owned by an individual

Kennedy O. Ondimu, Geoffrey M. Muketha

or organization, but to remain part of the larger distributed system it has to forgo some

of its freedom for example to make changes for its enhancement, but compromise its

role as part of the larger system. Likewise authority and control cannot be exercised

throughout the distributed system by a sub-system or component. A sub-system has

limited localized control while making sure that it remains coherent with the rest of the

system. Possession and authority/control that places responsibility on the owner, lacks

in distributed systems [11]. This makes it difficult for responsibility to be exercised

throughout the distributed system. Responsibility could make the owner take risk

mitigation initiatives in case of failure or loss which is impossible in a distributed

system. For example if there is an exponential build up of some fault/error, no single

entity can take the blame and even its source may be difficult to trace.

3.2 Funding

Traditionally organizations budget for and execute projects that are of strategic

importance to their survival or profitability. In a distributed system environment, what

you provide for may not be for your immediate benefit as an entity but quite crucial, say

for the industry in a cooperative environment [22]. For example a research station may

provide for others to access its database for purposes of comparison with other research

done elsewhere. The top management would be more interested in new findings from

the station and its priority would be geared towards an efficient processing and storage

system locally. However, the researchers in the station need to know and compare their

findings with others elsewhere hence the necessity for interoperability. The question

which arises at this stage is who is to provide the funds and their control [11].The

funding of the interoperability features would in most cases be an afterthought putting a

strain in the project budget and resources and are better avoided. It is even worse when

funds are required for just upgrading a system for interoperability with no internal

gains. The best approach for funding would be through an oversight body that funds

and ensures that all constituents of a distributed system adhere to set interoperable

standards.

3.3 Legacy systems

Most software is developed with a focus on immediate local problems. Even within one

organization differences of focus exist. Such systems, either as a department or a

system which forms part of a distributed system is likely to sub-optimize at the expense

of synergy in the whole distributed system. The architecture and schema of information

in each system may not be understood by the other systems making interoperability

impossible [14]. Legacy systems are a direct product of technological changes that

would always arise in a large organization with collaborative applications [17]. The old

system becomes a legacy system once a new technology is adopted. Interoperability is

more challenging regarding software and databases as opposed to hardware where

International Journal of Emerging Sciences 2(4), 619-631, December 2012

625

standards have been established for some time now. Changing the old software may

require source code and a lot of man hours. In databases, the progression has been

through hierarchical, relational and now object oriented. The architecture and schema of

such databases is different and interoperability is compromised. Some intermediate

intervention is necessary to facilitate the database interoperability between current and

legacy databases.

3.4 Security

The security issues in distributed systems involve four areas namely integrity /privacy

of: data, infrastructure, participant computer resources and application result

correctness [26]. A database that can be accessed by others, not responsible for its

security, poses a security risk. The immediate owners will therefore embark on a

number of measures such as passwords and encryption to safeguard the database. Such

measures achieve the exact opposite as regards ease of use by others to ensure

interoperability or openness. Security standard applied throughout distributed systems

can ensure that the measures taken have the same interpretation and that accessibility is

not compromised. Even then, same standards may not be applicable across countries

which have different data control legislations. Adopting an international standard such

as ISO 9000 may be the answer in such cases.

3.5 Emergent behaviour

Emergent properties are characteristics that arise from the cumulative actions and

interactions of autonomous constituents of a distributed system and cannot be localized

to any constant number of constituents. Distributed systems display certain global

properties that cannot be accounted for as the result of the sum of actions and properties

of their constituents. Emergent behavior arises naturally and predictably from influence

mechanisms, cascade effects, and other emergent phenomena that are inherent in

distributed systems [7]. In operating systems this is experienced as a priority inversion
scenario, whereby a high priority task is blocked because it needs a resource held by a

lower-priority task. A poorly configured load balancer (with a short timeout) can report

application server(s) dead just because they have grown in latency [25].

3.6 Tools for building distributed systems

The traditional approaches such as tight coupling with less cohesion, hierarchical

architectures and top-down would work in a proprietary system but curtail flexibility

and capability that define a distributed system. Attempts to use the tools currently

available in most cases results in cost overruns, yielding systems that are not scalable

and would fail anytime a change is introduced in one of the parts. According to [1] the

current tools where performance expectations are known and build by single focused

Kennedy O. Ondimu, Geoffrey M. Muketha

teams has reached a threshold. New tools are required that will scale the ever changing

requirements of distributed systems. An application or tool is considered interoperable

if it has the ability to executes multiple programming models concurrently over diverse

back-ends [24]

3.7 Lack of Motivation

Motivation for player effort towards enhancing their systems to interoperate with others

is very limited. According to [11], Program Offices and contractors often concentrate

on delivering a product that meet specific local requirements; little effort is invested in

achieving interoperability. Without some incentives as in business/economic

collaboration nobody will spend extra resources to achieve interoperability [18]. These

calls for an oversight body that sets and enforces interoperability standards. The body

can also introduce incentives for best practice achievements.

3.8 Ambiguous terminology

Terms used have different meanings (semantics) to different constituent players in a

distributed system. Different professions and sources treat different topics and approach

them from deferent viewpoints, techniques and objectives [6]. Even if systems are able

to access and retrieve information from each other, they still find it difficult to handle

ambiguity in the absence of a universal dictionary among professions and organizations

[18; 22]. This calls for agreement on terminology used a distributed systems among the

players.

4 DISCUSSION

As [11], points out, standards are necessary but not sufficient for guaranteeing

interoperability. Standards that can take care of problems such as semantic

interoperability have yet to be developed. An example is in the American armed forces

where different forces have a different meaning for the same terminology [11].

Suggestions by some researchers such as [6] and others to handle semantics are still

under development. Database interoperability alone cannot guarantee quality of service.

The databases are linked via the internet, which despite the convergence on TCP/IP for

connectivity, has a number of shortcomings such as: Many users are competing to

transmit information resulting in variable speed. Breakdowns are common for at least

short periods and occasional loss of transmissions. The database and data while on

transmission are always exposed to security risks if extra measures are not taken [4; 3].

Malicious content can corrupt data and programs, reformat complete disks or even shut

down systems among other forms of damage. In such events the system may not be

available.

International Journal of Emerging Sciences 2(4), 619-631, December 2012

627

From section 3, significant issues in achieving interoperability include: Ownership,

funding, legacy, security emergent behaviour, tools, motivation and ambiguity. To a

large extent, motivation is closely linked to the funding in a project and can be

effectively represented as part of the funding system. Emergent behaviour cannot be

represented on a scale like the other issues given its complexity. We therefore remain

with six/features issues, which can form the variables of a simple ranking framework.

The framework consists of a ranking scale based on a quantification of the presence or

absence of the issues/features identified.

Using a scale of 3, the issues are tabulated in Table 1.

Table 1: Issue measurement scale

 Measurement Scale

 0 1 2

Ownership No control Limited Control Total control

Funding No funding Limited funding Heavy funding

Legacy Legacy systems Mixed legacy and

modern systems

Modern systems

Security No standard Local standard International standard

Tooling No tools Limited tooling Tool optimized for

distributed systems

Ambiguity ambiguous limited effort to

harmonize semantics

high level of harmonization

of semantics

Total

Semantic interoperability remains a major challenge in digital libraries and all

systems using XML [9]. As a result in distributed systems as in the digital library, a

search may yield material that is not relevant to the user’s needs. The challenge of

interoperability in subject searching and browsing involving distributed digital libraries

[12] can be ranked using our framework as follows.

Different libraries may be using different catalogue schemes such as LCC (Library

of Congress Classification) and DDC (Dewey decimal classification) among others.

The same schemes can have extensions such that two libraries using the same scheme

may not be exactly the same. In most cases libraries are owned by institutions which

also fund or have a major role in funding and management. In some cases such

organizations agree to share resources with other libraries which are mostly the initial

Kennedy O. Ondimu, Geoffrey M. Muketha

goal of the organization and little or no funding is channeled towards achieving

interoperability. The libraries would most often than not have legacy files or Unique

material whose schema may not be global since it is not subject to agreements with

others, making it difficult to be accessed from outside. The collaborating institutions

agree to use XML.

Using our ranking framework, the library project is ranked in Table 2.

Table 2: ranking a library distributed system

 Measurement Scale Library

Project

 0 1 2

Ownership No control Limited Control Total control 1

Funding No funding Limited funding Heavy funding 1

Legacy Legacy

systems

Mixed legacy and

modern systems

Modern systems 1

Security No standard Local standard International standard 1

Tooling No tools Limited tooling Tool optimized for

distributed systems

2

Ambiguity ambiguous limited effort to

harmonize

semantics

high level of

harmonization of

semantics

1

Total 7

The minimal possible score is 0 while the maximum possible is 12. In this case,

while the framework scores more than 50%, a lot needs to be done regarding the other

issues.

5 CONCLUSION

Achieving interoperability in systems of systems is a challenging task. A number of

issues, technical and more so none technical remain to be dealt with. Some approaches

such as Navigator can be used to achieve some degree of interoperability. XML, the

most widely used application is able to handle a number of technical issues but lacks

International Journal of Emerging Sciences 2(4), 619-631, December 2012

629

semantic interoperability, which hopefully will be addressed by semantic web

development in future. So far the traditional tools used in implementing interoperability

are inadequate leading to poor products and budget overruns. Above all there are more

management related issues affecting interoperability than technical ones. Issues such as

ownership and funding have far reaching implications, underpinning the need for an

overseer to among others enforce discipline and fund features that support

interoperability. We have proposed a framework that can be used to rate interoperability

in distributed systems; however, the research findings are based on literature hence we

intend to empirically test the framework on a later date.

Both technical and management issues need to be addressed as organizations strive

to achieve Interoperability in distributed systems. Issues such as ownership and funding

are just as important as tools and security, hence the need for an oversight body to

address interoperability.

The proposed framework will help organizations intending to venture into

distributed system projects to generally rate their current status and also identify issues

that need to be addressed for better interoperability.

REFERENCES

1. Brownsword, Lisa, et al. System-of-systems navigator: An approach for managing

system-of-systems interoperability. No. CMU/SEI-2006-TN-019. CARNEGIE-

MELLON UNIV PITTSBURGH PA SOFTWARE ENGINEERING INST, 2006.

2. Carney, David, William Anderson, and Patrick Place. Topics in Interoperability:

Concepts of Ownership and Their Significance in Systems of Systems. No. CMU/SEI-

2005-TN-046. CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE

ENGINEERING INST, 2005.

3. Coetzee, Marijke, and Jan HP Eloff. "An access control framework for web services."

Information management & computer security 13.1 (2005): 29-38.

4. Connolly, Thomas M., and Carolyn E. Begg. Database systems: a practical approach

to design, implementation, and management. Addison-Wesley Longman, 2005.

5. Coulouris, George F., Jean Dollimore, and Tim Kindberg. Distributed systems:

concepts and design. Addison-Wesley Longman, 2005.

6. Da Silva, Catarina Ferreira, et al. "Semantic interoperability of heterogeneous semantic

resources." Electronic Notes in Theoretical Computer Science 150.2 (2006): 71-85.

7. Fisher, David. "An emergent perspective on interoperation in systems of systems."

(2006).

8. Guijarro, Luis. "Interoperability frameworks and enterprise architectures in e-

government initiatives in Europe and the United States." Government Information

Quarterly 24.1 (2007): 89-101.

9. Hasselbring, W. and weigand, H., “Languages for the electronic business

communication: State of the art”, Industrial management & data systems 2001; 101(5):

217-226.

Kennedy O. Ondimu, Geoffrey M. Muketha

10. Lakshmanan, Laks VS, and Fereidoon Sadri. "XML interoperability." ACM SIGMOD

Workshop on Web and Databases (WebDB), San Diego, CA. 2003.

11. Morris, Edwin, et al. System of Systems Interoperability (SOSI): final report. No.

CMU/SEI-2004-TR-004. CARNEGIE-MELLON UNIV PITTSBURGH PA

SOFTWARE ENGINEERING INST, 2004.

12. Nicholson, Dennis, and Ali Shiri. "Interoperability in subject searching and browsing."

OCLC Systems & Services 19.2 (2003): 58-61.

13. Seng, J., Liu, Y., Wang, J. and Yu, J., “An analytical study of XML database

techniques”, Industrial management & data systems 2003; 103 (2): 111-120.

14. Singh, Valdew. "Systems integration-coping with legacy systems." Integrated

Manufacturing Systems 8.1 (1997): 24-28.

15. Smith, James D. "Topics in Interoperability: Structural Programmatics in a System of

Systems." (2006).

16. Smith, Alan D. "Exploring potential strategic impacts of XML-related technologies."

Information Management & computer security 11.2 (2003): 92-100.

17. Iqbal, Rahat, Anne James, and Richard Gatward. "A framework for interoperability of

heterogeneous systems." Database and Expert Systems Applications, 2003.

Proceedings. 14th International Workshop on. IEEE, 2003.

18. Chituc, Claudia-Melania, Américo Azevedo, and César Toscano. "A framework

proposal for seamless interoperability in a collaborative networked environment."

Computers in Industry 60.5 (2009): 317-338.

19. Huang, Ying, and Jen-Yao Chung. "A Web services-based framework for business

integration solutions." Electronic Commerce Research and Applications 2.1 (2003): 15-

26.

20. Benguria, Gorka, and Xabier Larrucea. "Data model transformation for supporting

interoperability." Commercial-off-the-Shelf (COTS)-Based Software Systems, 2007.

ICCBSS'07. Sixth International IEEE Conference on. IEEE, 2007.

21. Miori, Vittorio, et al. "DomoNot: a framework and a prototype for interoperability of

domotic middlewares based on XML and Web Services." International Conference on

Consumer Electronics (ICCE'06). 2006.

22. Yahia, Esma, Alexis Aubry, and Hervé Panetto. "Formal measures for semantic

interoperability assessment in cooperative enterprise information systems." Computers

in Industry 63.1 (2012): 443–457

23. Kazemzadeh, Reza Sherafat, and Kamran Sartipi. "Interoperability of data and

knowledge in distributed health care systems." Software Technology and Engineering

Practice, 2005. 13th IEEE International Workshop on. IEEE, 2005.

24. Sehgal, Saurabh, et al. "Understanding application-level interoperability: Scaling-out

MapReduce over high-performance grids and clouds." Future Generation Computer

Systems 27.5 (2011): 590-599.

25. Mogul, Jeffrey C. "Emergent (mis) behavior vs. complex software systems." ACM

SIGOPS Operating Systems Review. Vol. 40. No. 4. ACM, 2006.

26. Cappello, Franck, et al. "Computing on large-scale distributed systems: XtremWeb

architecture, programming models, security, tests and convergence with grid." Future

Generation Computer Systems 21.3 (2005): 417-437.

