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Abstract – This is a study on some operator equations, 

operator inequalities and power bounded operators in Hilbert 

spaces. Looking at the operator equation TW = WS various 

properties on T, W and S such as; quasinormal, posinormal, 

hyponormal among others are satisfied, also on some operator 

inequalities the equivalence of constability of sequences of 

norms and its decomposition among other results are shown. 
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I. INTRODUCTION 
 

Prior to the development of Hilbert spaces, there were 

other generalizations of the Euclidean space which were 

well known by mathematicians and physicists, for instance; 

an abstract linear space studied towards the end of the 19th 

century.  

During the first decade of the 20th century, parallel 

developments led to the introduction of Hilbert spaces. The 

first of these was the observation which arose during David 

Hilbert and Erhard Schmidt's study of integral equations 

which illustrates how two square integrable real-valued 

functions f and g on an interval  [a, b] have an inner product 

which has many of the familiar properties of the Euclidean 

dot product by Heine Lebesgue 1904. This was given by;  

 〈𝑓, 𝑔〉  =  ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥
𝑏

𝑎
 

In particular, the idea of an orthogonal family of 

functions gained meaning here. 

Schmidt exploited the similarity of this inner product 

with the usual dot product to prove an analog of the spectral 

decomposition for an operator of the form; 

 𝑓(𝑥) →  ∫ 𝑘(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦
𝑏

𝑎
 

where k is a continuous function symmetric in x and y. The 

resulting eigen function expansion expresses the function k 

as a series of the form; 

 𝑘(𝑥, 𝑦) = ∑ 𝜆𝑛𝜑𝑛(𝑥)𝜑𝑛(𝑦)𝑛  

where  𝜆, 𝑥, 𝑦  are eigen functions for  𝑛, 𝑚 ∈ ℕ  and the 

functions  𝜑𝑛  are orthogonal in the sense that; 
〈𝜑𝑛, 𝜑𝑚〉 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≠ 𝑚  where 𝑛, 𝑚 ∈ ℕ. 

 

II. IMPORTANCE OF HILBERT SPACES AND 

APPLICATIONS 
 

Hilbert spaces support the generalizations of simple 

geometric concepts like projection and change of basis from 

their usual finite dimensional setting. Particularly, the 

special theory of continuous self-adjoint linear operators on 

a Hilbert space generalizes the usual spectral decomposition 

of a matrix, and this often plays a major role in applications 

of the theory to other areas of Mathematics and Physics. 

III. LITERATURE REVIEW 
 

Goya and Saito (1981) made a contribution on bounded 

linear operators on the Hilbert space H denoted as B(H). 

Goya generalized the Putnam-Fuglede Theorem by 

showing that if  𝑇, 𝑆 𝑎𝑛𝑑 𝑊 ∈ 𝐵(𝐻) where W has a dense 

range, then assuming  𝑇𝑊 = 𝑊𝑆  and  𝑇∗𝑊 = 𝑊𝑆∗  then 

T and S satisfy the conditions hyponormal, coisometry and 

normal. 

Furuta (1982) studied about the Hilbert Schmidt 

operators associated with the Putnam-Fuglede Theorem 

where he proved that if A and 𝐵∗ were Hyponormal 

operators and C a Hyponormal operator commuting with 𝐴∗ 

and 𝐷∗ being a Hyponormal operator commuting with B, 

then for an Hilbert Schmidt operator X, the Hilbert Schmidt 

norm of AXD + CXB is greater than or equal to the Hilbert 

Schmidt norm of 𝐴∗𝑋𝐷 + 𝐶∗𝑋𝐵∗. In particular;  

AXD = CXB which implies that; 𝐴∗𝑋𝐷 = 𝐶∗𝑋𝐵∗ 

 

IV. OPERATOR EQUATIONS IN HILBERT 

SPACES 
 

Remark 1.1 
Let the polar decomposition of  𝑊∗ is given by; 𝑊∗= 𝑉∗𝐵 

where B is a positive operator and  𝑉∗ a coisometry. 

Lemma 1.2 
Let T, S and W∈ B(H)  where W has a dense range. If, 

𝑇𝑊 = 𝑊𝑆. Then; 𝑇∗𝑊 = 𝑊𝑆∗ 

Proof 
Let 𝑊∗ = 𝑉∗B be the polar decomposition of  W*, B be 

a non-negative operator and V* be a coisometry with  

𝑊∗  ∈ 𝐵(𝐻). Since W is injective it never maps distinct 

element of its domain to the same elements of its co-

domain. Thus W* is injective. Taking the adjoint on both 

sides of equation; 

𝑊∗ = 𝑉∗B  

We then have; 

(𝑊∗)∗ =  (𝑉∗𝐵)∗  
Which implies; 

 𝑊 =  𝐵∗𝑉 
Thus the equation,  

 𝑇𝑊 = 𝑊𝑆   

Becomes; 

 𝑇𝐵∗𝑉 =  𝐵∗𝑉𝑆  

By post multiplying both sides of,  𝑇𝐵∗𝑉 =  𝐵∗𝑉𝑆  with  

𝑊∗  we have, 

𝑇𝐵∗𝑉𝑉∗𝐵 =  𝐵∗𝑉𝑆𝑉∗𝐵............................................... (i) 

Since V is a coisometry, we then have  

𝑇𝐵∗𝑉𝑉∗𝐵 = 𝑇𝐵∗𝐼𝐵 = 𝑇𝐵∗𝐵  ..................................... (ii) 

Now, 

𝑊𝑊∗ =  𝐵2  
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If and only if B is self-adjoint. For we have; 

W𝑊∗ = (𝐵∗𝑉)(𝑉∗𝐵) =  𝐵∗𝑉𝑉∗𝐵 =  𝐵∗𝐵 = 𝐵𝐵 =  𝐵2 

Therefore, 𝐵2 = 𝑊𝑊∗ is injective and V is coisometric 

since 𝑉𝑉∗ = 𝐼. 

Then from the equation (ii) we have; 

𝑇𝐵∗𝐵 = 𝑇𝐵2 = 𝑇𝑊𝑊∗  .............................................. (iii) 

Combining equations (i) and (iii) we have; 

 𝑇𝑊𝑊∗ = 𝐵∗𝑉𝑆𝑉∗𝐵 
This implies; 

𝑇𝑊𝑊∗ = 𝑊𝑆𝑊∗  ........................................................ (iv) 

By taking the adjoint on both sides of equation (iv) we 

have; 

 (𝑇𝑊𝑊∗)∗ = (𝑊𝑆𝑊∗)∗  

 This implies, 

 𝑊𝑊∗𝑇∗ = 𝑊𝑆∗𝑊∗ 

Thus this implies, 

𝑊∗𝑇∗ =  𝑆∗𝑊∗  ........................................................... (v) 

Letting the operators T and S to be self-adjoint operators, 

then equation (v) becomes; 

𝑊∗𝑇 = 𝑆𝑊∗  ............................................................... (vi) 

Taking the adjoint on both sides, equation (vi) becomes; 

 (𝑊∗𝑇)∗ =  (𝑆𝑊∗)∗  

This implies; 

 𝑇∗𝑊 = 𝑊𝑆∗ 

Lemma 1.3  
Let T, S and W∈ B(H) where W has a dense range. If  

𝑇𝑊 = 𝑊𝑆  and  𝑇∗𝑊 = 𝑊𝑆∗, then, 𝑉∗𝑉𝑆 = 𝑆𝑉∗𝑉  

Where V satisfies 𝑊∗ = 𝑉∗𝐵 with B a non-negative 

operator and  𝑉∗ is a coisometry with  𝑊∗ ∈ 𝐵(𝐻) 

Proof 
Since W has a dense range, it never maps distinct 

elements of its domain to the same element of its co-domain 

thus 𝑊∗ is injective. Taking the adjoint on both sides of  

𝑊∗ = 𝑉∗𝐵  we have; 

(𝑊∗)∗ =  (𝑉∗𝐵)∗ 

This implies; 

  𝑊 = 𝐵∗𝑉 

By post multiplying both sides by 𝑊∗ we have;                                                                                       

𝑊𝑊∗ = (𝐵∗𝑉)(𝑉∗𝐵) =  𝐵∗𝑉𝑉∗𝐵 

Since V is a coisometry 𝑉𝑉∗ = 𝐼   

Thus;                                                                                          

 𝐵∗𝑉𝑉∗𝐵 = 𝐵∗𝐼𝐵 = 𝐵∗B 

Now,  𝑊𝑊∗ = 𝐵2  if and only if B is a self-adjoint 

operator. Thus;                                                       

 𝑊𝑊∗ = 𝐵∗𝐵 = 𝐵𝐵 = 𝐵2 

Therefore,  𝐵𝟐 = 𝑊𝑊∗  is injective and V is coisometric 

since 𝑉𝑉∗ = 𝐼. 

From the equation  𝑇𝑊 = 𝑊𝑆,  by post multiplying both 

sides by  𝑊∗ we have; 

𝑇𝑊𝑊∗ = 𝑊𝑆𝑊∗  ........................................................ (i) 

Taking the adjoint on both sides of (i) we have;                                                                         

(𝑇∗𝑊𝑊∗)∗ = (𝑊𝑆∗𝑊∗)∗ 

This implies; 

𝑊𝑊∗𝑇 = 𝑊𝑆𝑊∗  ........................................................ (ii) 

From the equations (i) and (ii) we have; 

𝑇𝑊𝑊∗ = 𝑊𝑆𝑊∗ and   𝑊𝑊∗𝑇 = 𝑊𝑆𝑊∗ 

Thus  𝑊𝑊∗ commutes with T. Since V is a coisometry, 

by pre multiplying the operator T with B and post 

multiplying it with V, where B commutes with T we have; 

𝐵𝑇𝑉 = 𝑇𝐵𝑉   .............................................................. (iii) 

Since B commutes with T, we have; 

 𝑇𝐵𝑉 = 𝑇𝐵∗𝑉 
Since B is self adjoint. Therefore, 

𝐵𝑇𝑉 = 𝑇𝐵∗V = 𝑇𝑊 = 𝑊𝑆 = 𝐵∗𝑉𝑆 = 𝐵𝑉𝑆  ............ (iv) 

This implies; 𝑇𝑉 = 𝑉𝑆 

Since B is injective and V is coisometric, then we have; 

𝑇 = 𝑇𝑉𝑉∗ = 𝑉𝑆𝑉∗ ………..…………… (*) 

Since from equation (iii) we have; 

 𝐵𝑇𝑉 = 𝑇𝐵𝑉 
Then this equation implies that;  

 𝐵𝑇 = 𝑇𝐵 

This also implies that;  

𝑇𝐵 = 𝐵𝑇  .................................................................... (v) 

Similarly, Equation (ii) can be written as; 

𝑊∗𝑇 = 𝑆𝑊∗ ................................................................ (vi) 

Thus from the equations (v) and (vi), by pre multiplying 

(v) with 𝑉∗ we have,   

𝑉∗𝑇𝐵 = 𝑉∗𝐵𝑇 = 𝑊∗𝑇 = 𝑆𝑊∗ = 𝑆𝑉∗𝐵  
This implies;                                                                   

  𝑉∗𝑇 = 𝑆𝑉∗ 

Hence by pre multiplying 𝑉𝑆 = 𝑇𝑉  by 𝑉∗ both sides we 

have;   𝑉∗𝑉𝑆 = 𝑉∗𝑇𝑉 = 𝑆𝑉∗𝑉  

Therefore;  

 𝑉∗𝑉𝑆 = 𝑆𝑉∗𝑉 

Lemma 1.4 
Let T, S and  𝑊 ∈ 𝐵(𝐻), where W has a dense range. 

Given that; 

𝑇𝑊 = 𝑊𝑆   and  

𝑇∗𝑊 = 𝑊𝑆∗,  

then; 𝑇𝑉 = 𝑉𝑆. 
Proof 

Let  𝑊∗ = 𝑉∗𝐵   be the polar decomposition of 𝑊∗  

where B is a non-negative operator and 𝑉∗a coisometry with 

𝑊∗ ∈ 𝐵(𝐻). Since W has a dense range, it never maps 

distinct elements of its domain to the same element of its 

codomain and thus 𝑊∗is injective. 

Taking the adjoint on both sides of  𝑊∗ = 𝑉∗𝐵, we have; 

(𝑊∗)∗ = (𝑉∗𝐵)∗  
This implies that; 

 𝑊 = 𝐵∗𝑉 

By post multiplying by  𝑊∗  we have;                                                                            

 𝑊𝑊∗ = (𝐵∗𝑉)(𝑉∗𝐵) = 𝐵∗𝑉𝑉∗𝐵 = 𝐵∗𝐼𝐵 = 𝐵∗𝐵 

Now, 𝑊𝑊∗ = 𝐵2  

If and only if B is self-adjoint. Thus;                                                     
 𝑊𝑊∗ = 𝐵∗𝐵 = 𝐵𝐵 = 𝐵2 

Therefore, 𝐵2 = 𝑊𝑊∗  is injective and V is coisometric 

since 𝑉𝑉∗ = I. 

From the equation 𝑇𝑊 = 𝑊𝑆, by postmultiplying 

both sides by 𝑊∗we have; 
𝑇𝑊𝑊∗ = 𝑊𝑆𝑊∗  ....................................................... (i) 

And from the equation 𝑇∗𝑊 = 𝑊𝑆∗, by postmultiplying 

both side by 𝑊∗, we have; 𝑇∗𝑊𝑊∗ = 𝑊𝑆∗𝑊∗ 

Taking the adjoint on both sides we have;                                                                                 

(𝑇∗𝑊𝑊∗)∗ = (𝑊𝑆∗𝑊∗)∗  
This implies; 

𝑊𝑊∗𝑇 = 𝑊𝑆𝑊∗ ........................................................ (ii) 

This also implies that; 

𝑊∗𝑇 = 𝑆𝑊∗  ............................................................... (iii) 
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From the equations (i) and (ii), we have;                                                                             

𝑇𝑊𝑊∗ = 𝑊𝑆𝑊∗ and  𝑊𝑊∗𝑇 = 𝑊𝑆𝑊∗ 

Thus 𝑊𝑊∗ commutes with T and so 𝐵2 commutes with 

T since  𝐵2 = 𝑊𝑊∗  

Since V is a coisometry, by multiplying the operator T 

with B where B commutes with T and post multiplying the 

operator T with V, we have; 

 𝐵𝑇𝑉 = 𝑇𝐵𝑉  
Since B is self-adjoint, we then have;  

𝑇𝐵𝑉 = 𝑇𝐵∗𝑉 = 𝑇𝑊 = 𝑊𝑆 = 𝐵∗𝑉𝑆 = 𝐵𝑉𝑆  ............. (iv) 

This then implies that; 

 𝑇𝑉 = 𝑉𝑆   ................................................................... (v) 

Which also implies  𝐵𝑇 = 𝑇𝐵  hence, 

𝑇𝐵 = 𝐵𝑇  ..................................................................... (vi) 

Since B is injective and V is coisometric, then we have;                                              

  𝑇 = 𝑇𝑉𝑉∗ = 𝑉𝑆𝑉∗ 

Hence; 

𝑇 = 𝑉𝑆𝑉∗  .................................................................... (vii) 

By pre multiplying both sides of (vi) by  𝑉∗ we have;                                                                    

𝑉∗𝑇𝐵 = 𝑉∗𝐵𝑇 = 𝑊∗𝑇 = 𝑆𝑊∗ = 𝑆𝑉∗𝐵 ,  

This implies; 

𝑉∗𝑇 = 𝑆𝑉∗  .............................................................. (viii) 

Also by pre multiplying (v) by 𝑉∗, we have ; 𝑉∗𝑉𝑆 =
𝑉∗𝑇𝑉 = 𝑆𝑉𝑉∗  

Since V is isometric, this implies;  

𝑆 = 𝑉∗𝑇𝑉  .................................................................... (ix) 

Using (viii) and (ix) we have;                                                                                                     

𝑉𝑆𝑉∗𝑉 = 𝑉𝑉∗𝑇𝑉 

This implies;                                                                                                     

 𝑉𝑉∗𝑉𝑆 = 𝑉𝑉∗𝑇𝑉 and therefore our proof;  𝑇𝑉 = 𝑉𝑆 

Corollary 1.5 
Let T, S and  𝑊 ∈ 𝐵(𝐻), where W has a dense range. 

Given that  𝑇𝑊 = 𝑊𝑆  and  𝑇∗𝑊 = 𝑊𝑆∗ , then; 

i. If S is Quasinormal, then T is Quasinormal. 

ii. If S is Paramormal, then T is Paranormal. 

iii. If S is P-hyponormal, then T is P-hyponormal. 

iv. If S is Semi-hypormal, then T is Semi-

hyponormal.  

v. If S is log-hyponormal, then T is log-hyponormal. 

Proof 

To prove (i) 
Given 𝑆(𝑆∗𝑆) = (𝑆∗𝑆)𝑆. Then since 𝑇 = 𝑉𝑆𝑉∗ from 

lemma 2.4 we have;                            

 𝑇(𝑇∗𝑇) = 𝑉𝑆𝑉∗[(𝑉𝑆𝑉∗)∗(𝑉𝑆𝑉∗)] =
𝑉𝑆𝑉∗𝑉𝑆∗𝑉∗𝑉𝑆𝑉∗ = 𝑉𝑉∗𝑉𝑆𝑆∗𝑆𝑉∗𝑉𝑉∗ =
𝐼𝑉𝑆𝑆∗𝑆𝑉∗𝐼 = 𝑉𝑆𝑆∗𝑆𝑉∗ = 𝑉𝑆∗𝑆𝑆𝑉 =
𝑉𝑉∗𝑉𝑆∗𝑆𝑆𝑉𝑉∗ = [(𝑉𝑆𝑉∗)∗(𝑉𝑆𝑉∗)]𝑉𝑆𝑉∗ = (𝑇∗𝑇)𝑇 

Therefore, we have; 𝑇(𝑇∗𝑇) = (𝑇∗𝑇)𝑇 

To prove (ii) 
Since ∥ 𝑆2𝑥 ∥ ≥ ∥ 𝑆𝑥 ∥2, then we have;                                                                                            

∥ 𝑇2𝑥 ∥=∥ (𝑉𝑆𝑉∗)2𝑥 ∥=∥ (𝑉𝑆𝑉∗)(𝑉𝑆𝑉∗)𝑥 ∥=∥
𝑉𝑆𝑆𝑉∗𝑥 ∥≥∥ 𝑉𝑆𝑉∗𝑥 ∥2 

Since 𝑇 = 𝑉𝑆𝑉∗ then; 

 ∥ 𝑉𝑆𝑉∗𝑥 ∥2=∥ 𝑇𝑥 ∥2 

Therefore, ∥ 𝑇2𝑥 ∥≥∥ 𝑇𝑥 ∥2 

To prove (iii) 
Since (𝑆∗𝑆)∗ ≥ (𝑆𝑆∗)𝑃, then we have;                                                 

 (𝑇∗𝑇)𝑝 = [(𝑉𝑆𝑉∗)∗(𝑉𝑆𝑉∗)]𝑝 = [(𝑉𝑆∗𝑉∗𝑉𝑆𝑉∗)𝑝] =
[(𝑉𝑉∗𝑉𝑆∗𝑆𝑉∗)𝑝] ≥ [(𝑉𝑆𝑆∗𝑉∗)𝑝] = [(𝑉𝑆𝑉∗)(𝑉𝑆𝑉∗)∗]𝑝 =
(𝑇𝑇∗)𝑝.  

Thus; 

 (𝑇∗𝑇)𝑝 ≥ (𝑇𝑇∗)𝑝 

To prove (iv) 

Since (𝑆∗𝑆)
1

2 ≥ (𝑆𝑆∗)
1

2 ,  

Then we have;         

 (𝑇∗𝑇)
1

2 = [(𝑉𝑆𝑉∗)∗(𝑉𝑆𝑉∗)]
1

2 = [𝑉𝑆∗𝑉∗𝑉𝑆𝑉∗]
1

2 ≥

[𝑉𝑆𝑆∗𝑉∗]
1

2 ≥ [(𝑉𝑆𝑉∗)(𝑉𝑆𝑉∗)∗]
1

2 = (𝑇𝑇∗)
1

2 

Thus,  (𝑇∗𝑇)
1

2 ≥ (𝑇𝑇∗)
1

2 

To prove (v) 
Since log (𝑆∗𝑆) ≥ log (𝑆𝑆∗), then we have;                                   

 log(𝑇∗𝑇) = log[(𝑉𝑆𝑉∗)∗(𝑉𝑆𝑉∗)] ≥ log[𝑉𝑆𝑆∗𝑉∗] =
log[(𝑉𝑆𝑉∗)(𝑉𝑆𝑉∗)∗] = log[𝑇𝑇∗] 

Therefore, 

 log(𝑇∗𝑇) ≥ log (𝑇𝑇∗) 

Corollary  1.6 
Let T, V and  𝑊 ∈ 𝐵(𝐻)  where T is a paranormal, V is 

a coisometry, and W has a dense range. If  𝑇𝑊 = 𝑊𝑉∗𝑛. 

Then if T is normal with W injective and has a dense range 

then V is normal. 

Proof 
Let 𝑥 ∈ 𝐻 be a unit norm such that  𝑊𝑥 ≠ 0 and define  

𝑦𝑛 = 𝑊𝑉∗𝑛𝑥  (n=0, 1, 2, …). Then by using the Theorem 

above, 

𝑇𝑦𝑛+1 = 𝑇𝑊𝑉∗𝑛+1𝑥 = 𝑊𝑉𝑉∗𝑛+1𝑥 = 𝑊𝑉𝑉∗𝑉∗𝑛𝑥 =
𝑊𝑉∗𝑛𝑥 = 𝑦𝑛 … ….(*) 

Thus, 𝑇𝑦𝑛+1 = 𝑦𝑛 

By introducing norms to (*) above we have;    

∥ 𝑦𝑛 ∥=∥ 𝑇𝑦𝑛+1 ∥=∥ 𝑇𝑊𝑉∗𝑛+1 ∥ 

Since by hypothesis  𝑇𝑊 = 𝑊𝑉, then;      

 ∥ 𝑇𝑊𝑉∗𝑛+1𝑥 ∥=∥ 𝑊𝑉𝑉∗𝑛+1𝑥 ∥=∥ 𝑊𝑉𝑉∗𝑉∗𝑛𝑥 ∥=∥
𝑊𝑉∗𝑛𝑥 ∥ 

(Since V is coisometric). 

Since W is injective and has a dense range, then V is 

normal. This implies        

∥ 𝑉𝑥 ∥=∥ 𝑉∗𝑥 ∥        ∀𝑥 ∈ 𝐻 

And thus we have; 

 〈𝑉𝑥, 𝑉𝑥〉 = 〈𝑉∗𝑥, 𝑉∗𝑥〉 
This implies; 〈𝑥, 𝑉∗𝑉𝑥〉 = 〈𝑥, 𝑉𝑉∗𝑥〉  
Thus we have;  𝑉∗𝑉 = 𝑉𝑉∗ 

 

V. CONCLUSION 
 

From section IV some important results in the area were 

proved such as; Goya and Saito (1981) generalized the 

Putnam-Fuglede Theorem by showing that if  𝑇, 𝑆 𝑎𝑛𝑑 𝑊 ∈
𝐵(𝐻)  where W has a dense range, then assuming  𝑇𝑊 =
𝑊𝑆  and  𝑇∗𝑊 = 𝑊𝑆∗  then T and S satisfy the conditions  

hyponormal, coisometry and normal. 

 

VI. NOTATIONS 
 

1. PWB(H): power bounded operator in a Hilbert Space 

H. 

2. R(T): The range of an operator T. 
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3. H: Hilbert space for the complex scalars C. 

4. ‖𝑥‖: norm of a vector x. 

5. ‖𝑇‖: The operator norm of T. 

6. 〈𝑥, 𝑦〉: The inner product of x and y. 

7. 𝑥⨁𝑦: The direct sum of x and y. 

8. |𝑇|: The absolute value  (𝑇∗𝑇)
1

2  of an operator T. 

9. ∈: Member of 

10. ∀: for all 

11.  𝐵(𝐻): Bounded operator in a Hilbert space H. 
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