OVIPOSITION PREFERENCE OF *Aedes aegypti* MOSQUITOES IN MSAMBWENI SUB-COUNTY, KWALE COUNTY, KENYA

PETER SIEMA MUSUNZAJI

A THESIS SUBMITTED TO THE SCHOOL OF APPLIED AND HEALTH SCIENCES IN THE DEPARTMENT OF MEDICAL SCIENCES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTERS OF SCIENCE IN MEDICAL PARASITOLOGY AND VECTOR BIOLOGY OF TECHNICAL UNIVERSITY OF MOMBASA

2023

DECLARATION

I declare this thesis to be my original work and has not been presented for a degree
award in any other University.
Signature Date
Peter Siema Musunzaji
MMPV/0002/2015
This thesis has been submitted with our approval as University Supervisors.
Signature Date
Dr. Francis Mutuku
Department of Environment and Health Sciences
Technical University of Mombasa
Signature Date
Dr. Suleiman Mzee
Department of Medical Sciences
Technical University of Mombasa
Signature Date
Prof. Laila Abubakar
Department of Pure and Applied Sciences
Technical University of Mombasa

DEDICATION

I dedicate this thesis to my wife Agatha and my children Lewis, Nelis and Favor. Their support and advice have always been part of my decision-making process and I am a better man for it. With all of my heartfelt sentiment, I wish them many years of happiness.

ACKNOWLEDGEMENT

I would like to acknowledge my supervisors Dr. Francis Mutuku, Prof. Laila Abubakar and Dr. Suleiman Mzee for guiding me in the project work and thesis writing. My deepest appreciation goes to Dr. Mutuku for his mentoring, support and encouragement throughout my research work, and his commitment to improve my science. I would like to extent my gratitude to Riziki Kirenje and Mohammed Said Kirungu for their support in the study sites. Finally, and most importantly, I thank family members for their continued support which greatly assisted in the completion of this thesis. God bless you all!

DECLARATIONii
DEDICATIONiii
ACKNOWLEDGEMENTiv
LIST OF TABLESviii
LIST OF FIGURESix
ABBREVIATIONS AND ACRONYMSx
DEFINITION OF TERMSxi
ABSTRACTxii
CHAPTER ONE1
INTRODUCTION
1.1 Background Information1
1.2 Statement of the Problem5
1.3 Justification of the Study5
1.4 Research Questions
1.5 Objectives7
1.6 Significance and Anticipated Output7
CHAPTER TWO9
LITERATURE REVIEW
2.1 Aedes aegypti Mosquito Ecology9

TABLE OF CONTENTS

2.2 Dengue Fever
2.3 Aedes aegypti Oviposition Preference
2.4 Mosquito Vector Control Strategies
2.5 Factors Influencing Aedes aegypti Ovitrap Performance
CHAPTER THREE
MATERIALS AND METHODS15
3.2 Study Population15
3.3 Data Collection Procedure
3.4 Ethical Considerations
3.5 Data Management and Analysis23
CHAPTER FOUR
RESULTS AND DISCUSSION
4.1 Experiment I: Suitable infusion concentration25
4.2 Experiment II: Preferred infusion in laboratory setting
4.3 Experiment III: Preferred infusion in semi-field setting
4.4 Experiment IV: Preferred Oviposition Microhabitats in Field Setting
4.5 Experiment V: Preferred infusion in different microhabitats in field setting
4.6 Performance of Organic Infusions in Laboratory, Semi-Field and Field Settings33
4.7 Discussion
4.8 Limitations of the Study40

CHAPTER FIVE
CONCLUSIONS AND RECOMMENDATIONS
5.1 Conclusions
5.2 Recommendations
5.3 Further Research
REFERENCES
APPENDICES
APPENDIX I: Map of the Study Site60
APPENDIX II: Oviposition Microhabitats61
APPENDIX III: Ethical Review Certificate62
APPENDIX IV: Abstract of Paper in Publication63

LIST OF TABLES

Table 4.1 : Mean number of Ae. aegypti eggs laid in four Concentration of four different
organic infusions25
Table 4.2: Mean number of Ae. aegypti eggs laid in four different organic
infusions in the laboratory27
Table 4.3: Results of regression analysis by generalized estimating equations of eggs
trapping in four microhabitats in Ukunda and Msambweni sites in Kwale
County
Table 4.4a: Results of regression analysis using generalized estimating equations of
eggs trapping in four microhabitats using four organic infusions in Msambweni, Kwale
County, Coastal Kenya32
Table 4.4b: Results of regression analysis using generalized estimating equations of
eggs trapping using four organic infusions in different microhabitats in Msambweni,
Kwale County, Coastal Kenya33
Table 4.5: Aedes aegypti infusion preference in the Laboratory, semi-field and field
settings
Table 4.6: Oviposition Activity Index (OAI) for different organic infusions within
different microhabitats

LIST OF FIGURES

Figure 3.1: Set-up for determination of suitable infusion oviposition	
concentration(A)18	3
Figure 3.2 : Set-up for determination of infusion (B) in the laboratory19)
Figure 4.1: Error bars for Mean number of eggs laid by Aedes aegypti in different	
infusion concentration	5
Figure 4.2: Error bars for Mean number of eggs laid by <i>Aedes aegypti</i> females in differ	ent
50% infusions in the laboratory28	
Figure 4.3: Error bars for Mean number of eggs laid by <i>Aedes aegypti</i> in the 50%	
infusions in the semi-field conditions29)

ABBREVIATIONS AND ACRONYMS

DENV	Dengue	Virus.
------	--------	--------

- DFV Dengue Fever Virus.
- KEMRI Kenya Medical Research Institute.
- MEI Mean Egg Index.
- OPI Ovitrap Positivity Index.
- SAS Statistical Analysis System.
- WHO World Health Organization.
- YFV Yellow Fever Virus.

DEFINITION OF TERMS

Data	Facts and statistics collected together for reference or analysis.	
Incidence	The total number of new cases over the number at risk.	
Outbreak	Occurrence of disease cases in excess of normal expectations.	
Ovitrap	Mosquito egg trap.	
Prevalence	Proportion of a population found to have a condition.	
Surveillance	e Systematic collection, analysis and dissemination of health data for	
	planning implementation and evaluation of public health	

ABSTRACT

Aedes aegypti is the primary vector of dengue fever virus (DENV) worldwide. Kenya has reported increased outbreaks of dengue fever along its coast region in the last decade, with a corresponding increase in abundance of Ae. Aegypti. Infusions made from organic materials have been shown to act as oviposition attractants for Ae. Aegypti, however, studies on locally suitable infusion materials are lacking. The current study assessed the suitability of four locally available materials as oviposition infusions for use in control of Aedes aegypti in sub-county, Kwale County, Kenya. A secondary objective of the study Msambweni was to identify Ae. aegypti preferred oviposition microhabitats. Oviposition infusion preferences of four infusions made from leaves of banana, grass, neem, and coconut were assessed in laboratory, semi-field and field conditions. Ovitrapping in wall, grass, bush and banana microhabitats was done in 10 houses, each in urban (Ukunda) and rural (Msambweni) households to determine suitable oviposition microhabitats. Descriptive analyses were used to compare ovipositional responses among the different infusions and microhabitats. Overall, the highest (P<0.0001) oviposition responses were observed from banana infusion followed by neem (P<0.0001) and grass infusions (P<0.0001). Oviposition responses in neem and grass infusion were comparable. Coconut infusion resulted in the least oviposition response. Although female Ae. aegypti did not show preference to any microhabitat, the oviposition activity across all the microhabitats were highly enhanced by use of the organic infusions. However, the mean number of eggs laid in banana and bush microhabitats were higher (42.61±2.05 and 35.87±1.71respectively) compared to grass (32.55±1.66) and wall microhabitats (31.05±1.66). Banana leaves, mixed grass and neem tree leaves are suitable materials for oviposition infusions. Using these infusions, gravid mosquito could be attracted to oviposition sites that are laced with an insecticide to kill the eggs. Additionally, the small pockets of banana plantings should be important targets for integrated vector control programs.