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Abstract: This paper explored a novel method for strategic monitoring of a power system to schematically monitor power 
system variables that are sensitive to transients. The characteristics of a fully developed transient or power swing increase 
frequency slip rates, generator pole slips, rotor out-of-step etc. whose effects lead to loss of synchronism of coherent generators 
in a power system. When these occur, the resulting remedy could be load shedding schemes, generator tripping or controlled 
islanding. Failure to achieve any of these might lead to geographically extensive blackouts and/or the damage of auxiliary 
power system equipment.This paper looked at the Wide Area Monitoring (WAM) principle, consisting of collection and pre-
processing of field data, using Phasor Measurement Units (PMUs). A data mining exercise was performed purposing to 
identify strategic positions for PMU placement using the Classification and Regression Trees (CART) algorithm. The logic of 
CART was therefore also discussed.The proposition of strategic PMU placement as implied by the Decision Tree (DT) model 
acknowledges that a few PMUs in the power system network are capable of achievingWide Area Protection(WAP)functions. 
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1. Introduction 
This research was motivated to explore the capabilities of 

autonomous systems and its adoption to power system 
protection functions. These can be adapted to Wide Area 
Monitoring Protection and Control (WAMPAC) of power 
networks with the help of Phasor Measurement Units 
(PMUs). 

The advent of Phasor Measurement Units (PMUs) having 
microsecond accuracy, Phasor Data Concentrators (PDCs) 
and fibre optic data link cables (with transmission speeds of 
up to 100 Terabits/second) as reported by [1], [2], [3]have 
enabled the adoption of the automation concept (digital 
relays, pilot relay schemes and artificial intelligent systems) 
to wide area power system protection. The aggregation of 
these device functions enable data and decisions to be 
quickly and easily transferred between databases and 
substations. This enables the serving of these sub-stations in 
an unlimited resource in terms of geographical displacement 
and time. 

Owing to the dynamic behaviour of power systems, 
monitoring the grid to maintain its integrity has become a day 
to day activity in power stations. Having advancements in 

technologies to accomplish this, other power system 
problems still re-surface calling upon more stringent actions 
to be enforced. The idea and need for Artificial Intelligence 
(AI) and machine learning processes appear to be strikingly 
promising following evolving power system’s dynamic 
behaviour, faced with various different abnormalities while at 
a different state. This paper thus follows to discuss issues 
influencing wide area monitoring to tactfully maintain power 
system stability. 

2. Alignment of Wide Area 
Measurements 

Conventional methods in performing power system 
analysis involved assessing individual measurements of a 
specific local power system area. These were analysed 
accordingly to maintain the required local area normal 
operating condition. However, it has been established that 
power system abnormalities are a combination of various 
power system factors, aggregated from inter connected power 
system areas and each being contingent, one upon the other. 
Having this thought, in order to curb power system 
abnormalities more accurately, power system wide area 
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measurements need to be captured for various analyses. All 
these measurements have to be aligned to a common 
reference for analysis. This process is computationally 
burdensome and vulnerable to erroneous calculations. If 
these measurements were all aligned to a common reference 
from their point of collection, then this burden and error 
vulnerability would be reduced when all local measurements 
are collected together in a common database and used for 
various functional analyses. 

The convenience of Phasor Measurement Units (PMU) 
eases this burden as it pre-processes (filters electrical noise) 
wide area field measurements and aligns them to a common 
time reference. The measurements are synchronized by the 
Global Positioning System (GPS) to a common time and 
therefore reliably used in the analyses of various power 
system functions. 

WAM is achieved through having PMUs placed optimally 
to observe the network activities. Monitored are voltage and 
current magnitudes and phasors as well as the frequency 
deviation from its nominal value. Optimal placements of 
PMUs are described in papers [9], [10], [11], [12], [13], [14], 
[15], [16], [17], [18]. These placed PMUs collect 
measurements at the bus at which they have been placed & 
all incident lines that terminate at these bus where the PMU 
have been placed. The PMU is also capable of obtaining 
measurements of adjacent buses that are directly connected to 
the PMU bus through a line. The latter however depends on 
the number of output channels that a particular manufactured 
PMU has. Thus, having a single PMU at an optimized 
location in the electrical network, a wide area of 
measurements of the power system can be obtained. This is 
wide area monitoring. 

The obtained measurements are communicated to a central 
depository database and then to the power system control 

centre. At these centres, management and functional 
applications of these measurements are analysed and 
thereafter utilized. Such functions that will alter/affect the 
operation of this wide area are then referred to as wide area 
protection & control. 

A PMU dedicated to provide measurement data for 
protection and control functions should be placed on the bus 
bar incident to the area of interest as per conventional 
methods. In case of topology change causing PMU 
inaccessibility to obtain or channel data, PMU and 
transmission line redundancy is encouraged. Desirable PMU 
placement locations as recommended and seconded by [5], [6] 
for situational awareness and for protection functions case 
include at: 

(i) Main generating plant/source and its subsidiary 
sources (probably above 500 MW). PMUs will provide 
data relevant for generator dynamics, synchronization 
and generator tripping & dispatch scheduling. 

(ii)  High-voltage transmission systems ( above 230 kV), 
including those with HVDC stations, FACTS controller 
installations, or large tap-changing and phase-shifting 
transformers: PMUs in these locations  give useful 
data for voltage stability analysis (the analysis of the 
available transmission corridor), transmission control 
devices configuration (FACTS) 

(iii)  A major load centres, PMUs can monitor the load 
characteristics relevant for generator-load balancing, 
load-shedding schemes etc. 

(iv) Pre-defined separation islands where the rate of slip 
between the two sources can be monitored. 

System wide improvements by utilizing Synchrophasor 
Measuring Technologies (SMTs) or PMUs [7] include the 
availability of real time measurement information to perform 
the following (see Figure 1) 

 

Figure 1. WAMPAC Functions in Enhancing Stability [13] 
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(i) Schematic visualization of the power system’s 
state/situational awareness 

(ii)  Correct the conservative limits estimated (enhanced 
state estimation) during power system off-line 
planning. 

(iii)  Monitor marginal operating limits of the power 
system and thus be able to design early warning 
systems in the event operating condition s become 
very critical 

(iv) Data mining the SMT/PMU measurements enables the 
design of adaptive protection and adaptive control 
systems 

(v) Data patterns existing in phasor data concentrators can 
be used for benchmarking and validation of new 
designed system models 

(vi) Pre-islanded portions of the network can be easily 
monitored and thus improve the damping of inter-area 
oscillations and controlled islanding. 

(vii)  Forensic analysis of the causes of system failure by 
observing power system parameter behaviour before 
and during fault periods. 

Quasi – steady – state measurement from PMUs provides 
an almost real time data scheme for dynamic analysis of 
power systems. Phasor measurements give the magnitude of 
the internal voltage angle and the power angle of generating 
units for computation of the rotor position. These parameters 
of generating units don’t change with generator operation 
unlike the direct-axis reactance dX  and quadratic-axis 

reactance qX  used in classical methods to compute the 

electrical internal voltage and power angle of the generator. 
A PMU placed at a generator bus should thus measure 

internal and terminal phase and currents voltages of the 
generator; from which the power angles are derived. The 
PMU should also have a rotor position indicator. All these 
parameters are synchronized to a common time reference. 

The rotor position can be tracked by optical or magnetic 
means where a ‘shaft encoder’ or a cyclic synchronous wave 
may be produced by making a provisional slot to the rotor 
and these compared to the reference signal. At no-load rotor 
angle α  should equal zero, while voltage angles at terminal 
of generator should equal internal voltage angles of the same 
generator. From the reference signal, terminal voltage angle 
under no load is denotedβ . The offset between angles α
and β is γ  and normally remains constant unless generators 

physical modification is performed (such as coil re-assembly). 

 

Figure 2. PMU Phasor Diagram under No-Load Conditions 

Figure 2 represents the phasor locations from a common 
reference of generator internal and terminal voltages under 
no-load conditions. 

At load conditions, the internal voltage angle can be 
calculated from the rotor position α and the calibration offset 

since these parameters remain constant. Thus the internal 
voltage β  would be calculated as the difference between the 

offset and the rotor angle. (1) 

                             (1) 

The difference between the internal voltage β  and the 

terminal voltage gives the generator power angle δ Figure 3 

 

Figure 3. Phasor Diagram at Load Conditions 

This paper specifically looks at variables that are thought 
to compromise the stability of a power system, i.e. attributes 
that have significant weight/influence to the decision rules of 
a developed DT model in terms of power system stability and 
protection. Therefore, these candidate attributes, relevant to 
power system protection (out-of-step relaying) will be trained 
(supervised) by variables when the power system’s 
generators go Out-of-Step (OOS). (If predictors characteristic 
cause an OOS, the contributing attributes are classified as 
unstable, otherwise stable). The single developed tree should 
be reliable in judgement of the stability status of the power 
system. 

The DT model has implications on strategic Wide Area 
Monitoring (WAMs); the splitting criterion of the optimal DT 
model identifies the critical positions for PMU placements. 
The hypothesis being tested therefore is that a few strategic 
PMUs placed on the power system are capable of achieving 
WAP and enhance the stability of the power system. The split 
nodes of the optimal DT model also identify the critical 
parameters/variables to monitor for power systems transients. 

Wide Area Monitoring (WAM) for Wide Area Protection 
(WAP) is achieved from synchronised wide area 
measurements; through various field instruments such as 
PMUs, Digital Fault Recorders (DFRs) etc. which are all 
transmitted to a common central database. This WAM offer 
Situational Awareness (SA) on the operating states of the 
power system. The PMU’s data acquisition is timely, 
ensuring time consciousness to the protection scheme. 
Synchronised measurements offer a more reliable data for 
power system analysis; as the signals are aligned to a 

γ

γαβ −=
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common time reference, are time stamped, µs accurate and 
filtered from electrical noise. 

The transmission of the measured field data is through 
various telecommunication channels such as coaxial cable, 
fibre optic cable, wireless modems, etc. The communication 
channel speed needs to match up the urgency of the function 
to be executed in order to maintain the integrity of the power 
system. For power swing mitigation using out-of-step trip or 
block functions, the telecommunication of the synchronized 
wide area measurements needs to be faster than the critical 
clearing time of the power system so that the power system 
can still be stable. 

WAMs use communication networks and devices to 
transmit analogue/digital data from dispersed network 

locations to a central analysis point. In the neo-classical 
supervisory control systems acquired data were measured at a 
common reference wave signal using clocks synchronized to 
Universal Time Coordinated (UTC). Time obtained from 
UTC is through transmitters e.g. DCF77 transmitter in 
Frankfurt Germany, having accuracies of up to 10 ms. 
Greater accuracies of microsecond are obtained by satellite 
transmission from Global Positioning System (GPS). 
Transmitted messages from GPS at One Pulse per Second 
(1PPS) give calibrations for the beginning and the end of the 
pulse for time alignment purposes of other analogue/digital 
signals thus providing for synchronisation with UTC as the 
common referencing time. 

 

Figure 4. Wide Area Synchronized Measurements 

WAMPAC is an apprehension that mobilizes local area 
measurements. These local measurements are synchronized, 
aggregated and transmitted to various centres for various 
power system functions to maintain system integrity [8]. 
WAMPAC’s main building blocks are the PMUs, phasor data 
concentrators (PDCs), application software (AS), and their 
supporting communication networks (CNs). 

A. Strategic PMU Placement 
SA of the power system is achieved through PMU 

placement. A placement to observe only critical power 
system parameters influencing the stability of a power system 
is being argued out. The identification of these parameters 
and therefore only monitoring or prioritizing these variables 
as important, influences the operation of the predictor model 
(adaptive OOS relay) in making decisions. 

B. Developing Power Swings 
Identifying the different types of power swings influences 

the relay’s decisions to perform Remedial Action Schemes 
(RAS). This is the action taken by the wide area protection 
scheme to restore the power system back to its normal 
operating state or to maintain a good voltage profile having 
standardized electrical parameters in the power system. 

The remedial action taken by the out-of-step relay is either 
to block a trip signal or to send a trip signal to the circuit 
breaker(s). These are technically controlled islanding 
decisions referred to as Out-of-Step Blocking (OSB) and Out-
of-Step Tripping (OST) respectively. When a stable power 
swing is detected, a block signal is sent but when an unstable 
power swing is detected, a trip signal is sent to the circuit 
breaker. Faults are instantaneous and last for a very short 
time and therefore when the relay picks up a fault signal, the 
line experiencing the overcurrent should be isolated as soon 
as this overcurrent is detected. Power swings on the other 
hand are relatively slower than faults and therefore should be 
implemented considering a time delay. However, this time 
delay should be less than the critical clearing time of the 
power system to avoid loss of synchronism and stability. For 
power swings, they last longer and therefore if the pick-up 
signal by a conventional distance relay is to direct a trip, the 
same trip signal will be sent over and over until the power 
swing clears. This results in cascading trips, misbalancing the 
load-generator equilibrium thereby causing the system to lose 
synchronism. 

The fact that the relay continuously sends cascading trip 
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signals for the wrong type of power system abnormality 
(power swing) means that the relays have lost their security 
characteristic. For the mitigation of power swings, this out-
of-step function is implemented outside the third zone of the 
distance relay. If this function of the out-of-step relay 
performs properly, the relay is said to have a good selectivity. 
That is the outer most zone of the distance relay will be the 
first zone to detect the power swing and will be the first zone 
to act on it. 

Upon classifying power swings, stable power swings will 
not be threatening to the power system. Attention has to be 
paid to both stable and unstable power swings, though 
unstable power swing effects are more detrimental to the 
power system. If these unstable power swings are left to 
sustain, the power system will be unstable and lose 
synchronism. 

Nonetheless, the if power swings develop successively one 
after another, time consciousness to the WAP should be 
considered for timely prediction, classification and mitigation 
through the appropriate RAS. 

C. Type of Attribute 
The response characteristics of particular attributes to 

various changes in the power system are different from each 
other. Particular power system variables are more sensitive & 
vulnerable to transients than others. Therefore, monitoring 
parameters that show a good response to an Out-of-Step 
condition are crucial to detecting the stability status of a 
power system. 

The bias to important variables will reduce the amount of 
data size that updates the adaptive relay enabling its 
execution of RAS to be faster. Upon monitoring these 
variables, the performance of detecting and mitigating 
successive power swings is also enhanced. 

D. Artificial Intelligence (Decision Trees) for Digital 
Relays 

Digital relays operate according to the ordered algorithm 
installed in them. Because of the changing operating states of 
a power system, adaptive relaying through the adoption of AI 
adjusts the relay’s security, selectivity or dependability to 
achieve normal operating conditions of the power system 
[19]. 

3. Situational Awareness (SA) 
For wide area protection schemes, the corresponding 

control devices need to be aware of what is happening in the 
larger power system network. Decisions made based on 
information gathered from the entire power network are more 
accurate, timely and relieve the control devices from regular 
adjusting and re-adjusting of various power system 
parameters to maintain normal operating conditions. 
Therefore, the need for Wide Area Monitoring (WAM) 
devices becomes a significant note in performing Wide Area 
Protection (WAP). 

In tune to monitoring devices, the authors of reference [20] 
frontier research in Phasor Measurement Units (PMUs.) They 
provide the schematic design of the PMU. In their paper, they 

present various applications of the PMU to power systems, 
with little found applications to power system protection 
functions. Following this queue, the findings and literature of 
this research adds to bridge this gap on the application of 
PMUs to power system protection functions. 

So to say, a full awareness of the potential of PMUs thus 
needs to be unveiled and applied to power system functions 
not limited to protection functions but to the entire power 
system functionality. This will revolutionise power system 
device operation and application to control thus protection 
functions. To this effect, the conventional Supervisory 
Control and Data Acquisition (SCADA) systems found in 
current power system control centres are paving way for the 
Wide Area Measurement Protection and Control (WAMPAC) 
paradigm. 

In the context of power swing mitigation to reduce the 
consequence of having an out-of-step of generators, the 
traditional Out-of-Step (OOS) relays are locally oriented. 
They lack system wide awareness from the whole network. 
They therefore perform their actions based on this local 
information, mainly from the generator source which they are 
protecting. The impact of this local dependency of 
information could possibly lead to relay coordination 
complexities. This would be due to the fact that other relays 
would be similarly configured according to the information 
they received from their respective local surrounding. The 
relays would thus not be aware of contingent operations of 
the entire network affecting their decision making functions. 

The situation is that power system states continually 
change, leaving the power network vulnerable to collapse in 
the presence of various abnormalities. The dynamism of the 
fault nature is brought about by these changing states. That is, 
a particular fault magnitude is adverse to the power system 
when the power system is in an emergency state. The same 
fault magnitude is less harmful when the power system is in a 
normal state. Having static settings of the traditional OOS 
relay, faulty operations are bound to happen as the OOS relay 
will not recognize the various changing power system states. 

To the above notion of situational awareness, the mode of 
measurement, functionality and implementation of PMUs 
have been discussed by [21], [22], [23], [24], [25]. They give 
further technical attributes on the capabilities of PMUs. In 
the implementation process of PMUs for WAMs, it is 
however notable to have an optimal placement if the entire 
network has to be observed. The objective function of the 
optimal placement is to observe the entire power network 
having installed the least number of PMU devices. Reasons 
prompting optimal placement are for full network observance 
and to reduce the capital costs involved during purchase and 
implementation of PMU and wide area monitoring devices. 
Placement techniques have been discussed in [10], [12], [13], 
[15], [9]. 

The significance of wide area monitoring for situational 
awareness therefore lies in providing system wide prevailing 
conditions through measurements. These measurements are 
utilized to maintain system integrity through various 
‘informed’ control actions. Power system operators are able 
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to have a clear view of operating limits and therefore make 
informed decisions on the whole power system network. 

PMU implementations are evident in the North East 
United States and Italian interconnected systems after 
blackouts in 2003. Subsequently, the Eastern and Western 
Interconnection Phasor Project (EIPP&WIPP respectively) in 
the United States unraveled to curb the problem by deploying 
PMUs to monitor the system. In Europe, the Italian blackout 
in 2003 resulted in a number of PMU being deployed 
throughout the continent presently. Researchers are now 
putting more emphasis on making use of the phasor 
information to improve the system’s security and reliability. 
The success of these could foster PMU deployment in power 
system networks in the African continent as well [9]. 

However, deployment challenges and considerations 
common to implementing PMU projects include aligning 
signals and time zones to the Global Positioning System 
(GPS) or a common time referencing signal. Advanced 
analytics are required to manage different granularities of 
real-time data received from PMUs, Phasor Data 
Concentrators (PDCs) and SCADA systems [14], [16]. 

4. Size and Type of Attributes/Variables 
in Hypothesis Space 

In selecting data to be trained from a data base, it is 
important to have a bias to selecting attributes that are 
deemed to have weighty contribution to the problem being 
investigated. It is however assumed that the more 
information one has, the more likely the decision model will 
be able to make accurate decisions [26]. With limitations of 
digital systems taking long execution times for a large 
database of measurements, slower response time in actuating 
protection auxiliaries (circuit breakers, capacitor 
compensators etc.) to mitigate a fault or power swings, 
(lasting for periods between 3-40 cycles) it would be 
reasonable to employ strategies that would reduce the 
amount/size of executable data by using only relevant data 
substantial enough to give reliable judgement. This notion of 
reducing the hypothesis space or sample size is also 
suggested by the works of [27]. This therefore led to the 
investigation of finding out if a minimal number and a 
specified type of electrical variables could be identified to 
predict a power swing. Various studies like [28] have shown 
that accurate results are possible with a lesser training sample, 
testing its accuracy on a larger set of database information. 

It is notable and evident that most analysis engineers use 
pre-processed measurements (using adaptive filters) to 
reduce the noise ratio compared to the signal. By doing so, 
the collected measurements give a true representation of the 
actual signal being produced by the power system. Some of 
these filters use the conventional Discrete Fourier Transform 
(DFT), Fast Fourier Transform (FFT) etc. while most recent 
filters employ a combination of algorithms to suit to the 
measurement environment. Relay input data and digital fault 
recorder data could supplement PMU measurements for 

retrieving relevant data that the PMU cannot measure. This 
also has a great value in revealing hidden failures 
experienced by the OOS relays, though not all measurement 
data is used for the prediction purpose. 

When developing an intelligent decision model for the 
purposes of power system protection, simulation cases that 
reflect faulty scenarios should comprise a larger majority in 
the hypothesis space/sample data set. These include large 
motor load models, network topology changes 
(adding/tripping of power lines etc.) to tap best measurement 
sets for a data mining exercise with an aim of achieving a 
learning function/model representing various power system 
parameter relations. The importance of this is for the critical 
learner of the model to acquaint itself with various fault 
levels at various power system states. 

When relay threshold settings don’t seem to be right, or if 
nuisance tripping occurs after developing a decision model it 
could be probable that the number of simulations having 
various contingencies and operating points was not 
wholesome to cover all possible power system situations to 
properly train the data. The intensity of the simulations 
having various operating points greatly influences the 
resulting decision rules. A significant simulation exercise 
would result in decision rules being sufficient enough to pose 
as a blanket policy setting for power relays to mitigate on all 
other power system fault types. 

Best practice in setting the hypothesis space for training 
models involves partitioning the data into various sub-groups 
and using each sub-group as a training sample and similarly 
as a testing sample. This is commonly referred to as v-fold 
test/train criterion. The v refers to the number of partitions. 
Authors in [29] suggest that training should be done 
continuously to improve the prediction accuracy. This should 
not be the case as regular training will deprive the predictive 
model its meaning of being adaptive. However, updating of 
the decision models needs to be periodic. When a major 
topology change occurs (e.g. loss of line/generator) the 
updating of the important variables should be done 
immediately. This updating of data for developing new 
decision models is however influenced by the sampling rate 
of input measurements and communication transmission 
speeds. Considerable measure needs to be put when 
matching/selecting communication channels for updating 
decision models from remote databases. 

Variables contributing highly in variable ranking/variable 
importance to performance of the model are chosen as 
candidate attributes and only these are used by the decision 
model to develop a new decision model/learning function. 
Moreover, these are the only attributes updated. The final 
decision model will therefore comprise classes of these 
candidate attributes each indicating cut-off values of each 
class. The representation of a pure class of attributes with 
threshold limits of contents belonging to that particular class 
is called a monograph. Each selected monograph therefore 
identifies execution rules for the decision model. 

The sample size and type of attributes in the sample set for 
training are therefore important factors as they enhance 
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execution speeds of the decision models [30]. 
At this juncture, it is justifiable to perform classification 

methods of various electrical parameter characteristics. Thus, 
the Decision Tree (DT) technique using the Classification and 
Regression Trees (CART) is employed to perform this 
classification. The aim would be to find out how each 
variable responds to power system changes. The relationships 
of most sensitive variables to a particular power system 
disturbance are therefore able to be drawn from this 
classification. These sensitive variables can then be solely 
used to detect when these particular disturbances occur. DT 
methods are also discussed in references [31], [28], [32], [33], 
[34], [35], [36], [37], [38], [39], [40], [41], [42], [43]. 

DT is applicable to any data type/ data structure having a 
large set of input data and therefore suitable for 
drawing/marking decision boundaries for data having large 
dimensional spaces. Its major property involves classifying 
variables of same characteristics into classes. From these 
classes, rules of the developed model are easily derived from 
a top-down ordered sequence traversing through each 
terminal leaf node until the final (independent variable) 
terminal node infers a decision. The training of DTs can be 
done in both on-line and off-line modes thus enabling the DT 
model to be updated through whichever means. 

PMUs aid in enhancing the protection function by 
providing timely and accurate wide area measurements to 
real-time protection schemes. All these wide area field 
measurements are aligned by the GPS to a clock common 
time reference i.e. UTC at 1PPS. This 1PPS functionality 
enables the PMU measured signals to be time stamped, 
enabling real-time monitoring & control of the power system 
as well as performing post-mortem analyses. 

The standardisation of synchronised measurements also 
improves measurement accuracy by ensuring compatibility 
of:- devices, transmission protocol, and data formats. Various 
synchrophasor standards have been listed. The ultimate 
benefit of a synchrophasor standardisation is high 
measurement accuracy, TVE confined to 1%. This translates 
to a time accuracy of 1µs and a phase error of 0.0220 for a 50 
Hz or 0.01670 for a 60 Hz power system. 

The WAM architecture as discussed with respect to Wide 

Area Protection &Control (WAPC) function. Because of the 
wide geographic reach of PMUs, communications 
infrastructure has to be invested on. The communications 
infrastructures, integrated into the power system using 
various standards have been viewed. Issues thought to 
hamper PMU functions have been discussed; 
noise/harmonics affecting frequency of measured signals, 
latency affecting data frame size and rate of frame delivery, 
and time synchronisation issues of signals to various clocks 
e.g. Universal Time Coordinated (UTC). 

5. Methodology 
The overview of obtaining the results of the strategic 

placement is as represented inFigure 5. 
The Wide Area Measurement (WAM) concept is achieved 

when the aggregate or bulk of local area measurements are 
aligned to a common reference point (synchronized) and used 
for analysis of power system inter-area operating conditions. 
Wide Area Protection (WAP) is achieved through the 
utilization of these synchronized WAMs to mitigate the 
spread the propagation of power system abnormalities into 
the adjacent inter-area and subsequently to the entire network. 

 

Figure 5. Machine Learning Framework 

Transient stability analysis was performed on an IEEE 39 
bus test system in DIgSILENT ® and the learning sample data 
was extracted using virtual instruments available in 
DIgSILENT ® platform. The Critical Clearing Time (CCT) 
criterion was used to determine the stability endurance of the 
system when it was subjected to transients; or rather how 
long the system would be able to withstand a power system 
abnormality without losing stability. The learning sample 
from the PMU measurement data was organized and stored in 
a data base in Microsoft Excel® 2010 

 

Figure 6. Simulation Responses of Successive Swings 
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Figure 7. Rotor Angle Slip from Reference Machine 

 

Figure 8. Generator Speed Deviations 

The CART analysis and DT model design was done using 
Salford Predictive Modeller-CART® v6, trial licence. 
Growing of the tree was done through the Gini splitting 
criterion. 

The aim of the transient stability simulation was to induce 
power disturbances/swings at the critical load centres to 
create a generator-load imbalance. This was done until the 
power system was observed to be transiently unstable. A 
graphical representation of one of the simulation responses is 
represented as in Figure 6, Figure 7 and in Figure 8. The 
transient stability was bounded by a combination of the 
critical clearing time , frequency deviation from nominal, 
voltage phasor angle deviation from the reference machine 
and generator out-of-step. 

(i) The voltage profile should be within 0.95-1.05 p.u. 

(ii)  The load phasor voltage angle should not advance the 
generator phasor voltage angle by 4 pole slips 

(iii)  The frequency deviation from the nominal frequency 
of the reference machine should not be greater than 

 
(iv) Loss of synchronism/Out-of-Step of a generator. 
The DT using the CART technique was developed as 

follows: 
(i) The learning sample L was arranged as an ; 

where  = number of variable cases and  = 
number of attributes + actual/known output from 
simulation. Because of space limitations, the learning 
sample could not be appended. 

(ii)  From the learning sample , the minimum number of 
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elements  to make up a terminal node was set as 

1. In this training, the DT model was proposed to be 
grown until its maximal i.e. having only one case in 
the final terminal node. 

(iii)  Attributes were sorted in order to initialize splitting 
points 

a) From the set of attributes  in the 

learning sample , an attribute was selected. If 
 is numeric, then splitting value is at the midpoint of 

adjacent measurements i.e. 

                      (2) 

Where 
 = variables of attribute a having values  

b) Define  as a categorical variable of sets
. If  is categorical, the possible 

splitting points fall within the range of available sets of 
that particular attribute. 

(i) The impurity reduction level was computed, 
achieved by the improvement from (3). 

            (3) 

Where  

a)  = Gini index . The Gini index 

computes the impurity levels at both subsets and  

as (4). 

                                (4) 

Where 
 = the total number of vector measurements at node  

and  = total number of vectors falling into the 

left and right subsets respectively 
 = estimated possibility that a case falls in node  

and belongs to class  

                          (5) 

Where 
b)  = re-substitution estimator of the probability 

that a case falls in node and belongs to class  

                       (6) 

Where 

 = the actual number of cases of class  at node 

 

 = the total number of cases that belong to class  

 = Prior probability provided by the trainer of the 

data 

                          (7) 

c)  = estimator of the possibility that a case falls in 

node  

                           (8) 

(ii)  After improvement of each attribute was computed, 
a variable ranking of all attributes was performed. 
The measure of importance of a variable  in 
relation to the final tree  is the weighted sum 
across all splits in the tree of improvements that  
has when it is used as a surrogate. 

a) The measure of importance of a variable was expressed 

as  

Where 
 = Measure of importance of a variable  in relation 

to the final tree  
 = maximal decrease in node 

impurity for division of a parent node  into child nodes  

and  guided by surrogate splits  

b) The variable importance  of is expressed in 

terms of a normalised quantity relative to the variable 
having the largest measure of importance. This was 
calculated as (9). 

               (9) 

(iii)  Using the Gini purity index, the root node was 
identified and selected; node having the greatest 
variance hence highest Gini impurity value. 

(iv) On the root node, the splitting points for the 
resulting child nodes were located. Split was 
determined from a set of all possible splitting points 
amongst all the attribute/variables. For each splitting 

value at a particular node , the root node 

was we partitioned into separate subsets  and  

forming the left and right child nodes respectively. 
a) For numerical variables, then 

                 (10) 

b) For categorical variables, (have finite sets) then 
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                      (11) 

(v) The next step involved finding the optimal split 
 over all possible splitting values  

amongst all attributes  until no more splitting 
can be achieved. For Gini splitting, we recall the 
Gini Index for node purity as (13). 

            (12) 

           (13) 

Where 

= Number of cases at node  

= Number of cases at node  

= the Gini Index of each node 

 

      (14) 

(vi) A classification decision was made from terminal 
nodes. A node was classified in class  if 

for all values of     (15) 

Where 

 = cost of classifying as  

 = prior probability of  

 = number of class  in dataset 

 = number of class  in node 

(vii)  Each of the remaining predictor’s best split points 
were defined using the Gini split criterion. The next 
splitting point of the subsequent node that 
maximizes the splitting criterion was selected and 
steps (viii) through (ix) were repeated. 

(viii)  If the stopping rules had not been satisfied, steps 
(viii) through (x) were repeated, otherwise process 
stopped. 

5.1. V-fold Cross Validation 

Testing of the decision tree model is performed against the 
whole learning sample. 10–fold cross validation technique 
was employed. 10-fold cross validation was performed by 
dividing the learning sample into ten portions. The decision 
tree rules are tested using only one portion (1/10) of the ten 
portions at a time. The remaining nine portions (9/10) are 
then used to grow another tree and the error rate of the first 
and second trees are computed. This is repeated until testing 
of the model is done on all ten strata of the partitioned 
learning sample. This was diagrammatically represented as 
Figure 9. 

 

Figure 9. 10-fold cross validation (Adopted from [65]) 

10-fold cross validation was used because of its robust 
learning and testing technique; it tests the decision tree model 
eleven times. The reliability of each sample will be measured 
by a misclassification rate given by the Gini Index. This is 
defined by )(ti in (16). 

                             (16) 

Where 
)( tCP j
 = the probability that a scenario belongs to class 

jC  given that it falls intot . 

The cross-validation gives a best fit for the value of the 
cost complexityα . This is was represented as (17) 

Set  

 
(17) 

Complexity parameter β  with smallest risk is selected as 

the optimal pruned tree. (For a reliable decision tree, the 
complexity parameter should be as low as possible.) 
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Figure 10. Decision Tree Growing Algorithm (Courtesy of [44], [45], [46]) 
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6. Results & Analysis 

The hypothesis being presented here is that strategic PMU 
placements would be sufficient to monitor an entire power 
system network for the purpose of Wide Area Protection & 
Control (WAPC). The split nodes of the DT model identify 
the important variables that predict a power swing. Therefore, 
placement would be towards monitoring these specific 
important variables. The primary splitters present the best 
PMU placement location while the surrogate splitters present 
the second best alternative. The latter is so because the 
surrogate splitters imitate the primary splitter’s 
characteristics. Moreover, since surrogate splitters handle 
missing data, in application to a power network they would 
thus make a provision for PMU placements with topology 
change (line/generator outage) considerations. 

The execution time of the maximal DT model was 0.1 
seconds. Though this is desirable, lesser execution time 
would be more efficient. Thus the need for pruning to have 
an optimal DT model would reduce this execution time. This 
is because the optimal tree has fewer nodes and lesser 

variables. Although the relative error of the optimal DT 
model increases from 0.000 to 0.003, the misclassification 
error of cases is less than 0.1%. Though this error is minimal, 
terminal nodes of a pure classification are selected for the 
prediction. This is to ensure that the misclassification error 
doesn’t have a role in the prediction of the power swings. 

According to the splitters presented in Figure 11 optimal 
placement of PMUs for the purpose of Wide Area Protection 
& Control (WAPC) would be on buses 16, 22, 23, 31 and 35. 
Placement on these buses would monitor bus parameters and 
incident lines terminating on these buses. The EHV lines 6-22, 
7-23, 10-31 and 2-35 link the generators 6, 7, 10 and 2 
respectively. Therefore, these 5 buses are the critical 
observation points for monitoring developing transients in 
the IEEE 39 bus system as tabulated inTable 1. The electrical 
parameters to be monitored as represented by the splitter 
nodes in Figure 11are generator rotor angles, generator speed 
deviation, voltage phasor angle, positive sequence current 
magnitude and the active & reactive current magnitudes. 
Therefore, only these aforementioned parameters will be 
updated in the DT model. 

 

Figure 11. Optimal DT Tree Splitters 

Table 1.Strategic PMU Placement Positions on the IEEE 39 Bus System 

PMU Placement Bus Number Incident Lines EHV Line Generator Load Bus 
16 16-15, 16-17, 16-21 and 16-24 Nil Nil 15, 16, 21 and 24 
22 22-6, 22-21 and 22-23 22-6 6 21 and 23 
23 23-7, 23-22 and 23-24 23-7 7 23 
31 31-10, 31-25, 31-32 and 31-39 31-10 10 25, 31 and 39 
35 35-2, 35-13, 35-34 and 35-36 35-2 2 36 

 
However, the disadvantage emanating from the 

aforementioned limitation is that in case a transmission line 
of the important splitter variable is tripped, the PMU would 
not have information about this line. Because of this 
tripping/removal of a critical line is a major change in the 
network’s topology, updating of the DT model may fail. The 
performance accuracy of identifying the splitting criterion for 
stability enhancement after training and testing were 
presented in Table 1. 

Therefore, this paper demonstrated the capabilities and 
gratification of synchronized phasor measurements (using 
PMUs) in power system Wide Area Monitoring Protection 
and Control (WAMPAC). It brings forth the relative worth of 

PMU data for the purposes of a data mining exercise in that 
the PMUs will provide a comprehensive acquisition of 
synchronized wide area phasor measurements. 
Geographically dispersed local measurements of the power 
system are synchronized to a common time reference and 
transmitted to a central processing unit in the control centre. 
The PMU measurements are also accurate, therefore 
more reliable data for various analyses. 

7. Conclusion 
The theory behind Wide Area Monitoring Protection and 

Control (WAMPAC) was brought into concept. Wide Area 

sµ
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Monitoring (WAM) forms the basis of the Wide Area 
Protection & Control. Synchronized wide area measurements 
enhance the integrity of measurement data for various power 
system analyses. The Phasor Measurement Unit (PMU) was 
advocated for in this paper for the purposes of WAMs. This is 
because of its effortless capabilities in synchronizing wide 
area measurements, high measurement sensitivity (
accurate), high sampling rate, time stamping and the filtering 
of electrical noise capabilities. 

The utility of the PMUs in a data mining is therefore 
realised through its high sampling rate and calibration of 
measurement data. Strategic placement of PMUs therefore 
achieves WAM for quasi or real-time analyses of the power 
system’s functions. 

The applications of data mining techniques are explored, 
where power system analysers will be able to realise the 
benefits of learning from past recorded data and therefore 
adopt this method in discovering meaningful information 
from their archives of recorded data. A more meaningful 
relationship of events can be traced from a larger set of data, 
portraying relationships of outcomes of events. 

Noteworthy is that some power system variables which are 
thought to be major contributing factors to detecting a 
particular power system event may not unfold to be so. DT 
models are able to show the ranking of various variables. 
This focuses the attention of protection engineers and power 
system operators to these attributes and scenarios and thereby 
helps to develop efficient and effective solutions. 

The contribution of this paper is that it provided a 
methodology for identifying strategic placement locations for 
WAM devices for the purpose of designing a WAP scheme. 
The placements strategies to enhance power system stability, 
monitoring a few identified important variables that will 
predict a power swing. 
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