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and these interactions can be competitively inhibited by N-
acetyl- D -glucosamine. In addition, the binding of L-ficolin 
and FCNA may lead to the activation of the lectin comple-
ment pathway. To our knowledge, this is the first report dem-
onstrating that L-ficolin can block influenza virus infections 
both in vitro and in vivo using FCNA-knockout mice, possibly 
by interacting with the carbohydrates of HA and NA. There-
fore, these data may provide new immunotherapeutic strat-
egies based on the innate immune molecule L-ficolin against 
the influenza A virus.  Copyright © 2012 S. Karger AG, Basel 

 Introduction 

 The innate immune system prevents or limits the ear-
ly stages of an infection and involves many different rec-
ognition and effector mechanisms, including the comple-
ment system. Complement can be activated via three 
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 Abstract 

 L-ficolin, one of the complement lectins found in human se-
rum, is a novel pattern recognition molecule that can spe-
cifically bind to microbial carbohydrates, thereby activating 
the lectin complement pathway and mounting a protective 
innate immune response. However, little is known about the 
role of L-ficolin during viral infections in vivo. In the present 
study, we used a mouse model of influenza A virus infection 
to demonstrate that the administration of exogenous L-fico-
lin or ficolin A (FCNA – an L-ficolin-like molecule in the mouse) 
is protective against the virus. Furthermore, FCNA-null mice 
have a greatly increased susceptibility to infection with the 
influenza A virus. Moreover, we found recombinant human 
L-ficolin inhibited influenza A virus entry into Madin-Darby 
canine kidney cells. More importantly, L-ficolin can recog-
nize and bind hemagglutinin (HA) and neuraminidase (NA) 
glycoproteins and different subtypes of influenza A virus, 
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pathways, the classical, the alternative and the lectin 
pathway  [1] . The complement lectins in human serum are 
important innate immune molecules. Mannan-binding 
lectin (MBL) and the recently identified ficolins are two 
kinds of complement lectins  [1] . These lectins are capable 
of recognizing microbial carbohydrates and can activate 
the lectin complement pathway by a mechanism similar 
to the classical pathway, but they use MBL-associated ser-
ine proteases instead of C1r and C1s  [1, 2] .

  Three members of the human ficolin family have been 
characterized, L-ficolin/P35 (ficolin-2)  [3] , H-ficolin (fi-
colin-3)  [4]  and M-ficolin (ficolin-1)  [5] . L-ficolin/P35 
(with a molecular weight of 35 kDa) was first cloned and 
described as a type of lectin (carbohydrate-binding pro-
teins) with a similar structure and function to MBL  [1, 2] . 
L-ficolin, similar to MBL, contains a collagen-like stem 
structure. Unlike MBL, however, it has a fibrinogen-like 
domain and has a common binding specificity for N-
acetyl- D -glucosamine (GlcNAc), 1,3- � - D -glucan, lipotei-
choic acid and various acetylated compounds  [6–8] . Both 
L-ficolin and MBL are carbohydrate recognition mole-
cules that can recognize the surface molecules of micro-
organisms and subsequently trigger the activation of the 
lectin complement system, which plays a pivotal role in 
innate immunity  [9] . In mice, the ficolin A (FCNA) mol-
ecule has been identified as the L-ficolin homologue  [10] .

  Influenza A virus is an important human pathogen 
that causes yearly epidemics and sporadic pandemics 
worldwide  [11] . There are three types of influenza virus-
es: A, B, and C. To date, 16 subtypes of hemagglutinin 
(HA) (H1–H16) have been identified; however, only H1, 
H2 and H3 subtypes have achieved sustained transmis-
sion in human populations  [12] . Moreover, the highly 
pathogenic avian influenza H5N1 virus continues to be 
enzootic in poultry in parts of Asia and Africa and can 
be transmitted zoonotically to humans. From 2003 to 
November 2009, the influenza H5N1 virus caused 444 
confirmed human cases, and 262 of them were fatal  [13] . 
Thus, the development of an immunological defense 
strategy or of new drugs against the influenza A virus 
remains a high priority goal. The genome of influenza A 
viruses is composed of 8 RNA segments (0.9–2.3 kb) that 
span together approximately 13.5 kb and encode 11 pro-
teins  [14] . Segment 4 encodes the major surface glycopro-
tein (HA), which is responsible for attaching the virus to 
sialic acid residues on the host cell surface and for fusing 
the virus membrane envelope with the host cell mem-
brane, thus delivering the viral genome to the cell. Seg-
ment 6 encodes another surface glycoprotein, neuramin-
idase (NA), which cleaves terminal sialic acid residues 

from glycoproteins and glycolipids on the host cell sur-
face, thus releasing budding viral particles from an in-
fected cell  [15] . L-ficolin can also serve as an opsonin and 
enhance the clearance of pathogens  [16] . L-ficolin has 
been reported to bind specifically to clinically important 
bacteria, including  Salmonella typhimurium, Streptococ-
cus pneumoniae and Staphylococcus aureu s, and to func-
tion as an opsonin when binding to certain types of car-
bohydrates on the surface of pathogens in vitro    [3, 7, 17] . 
In this study, we firstly show that L-ficolin can recognize 
and bind to HA and NA of the influenza A virus. We also 
demonstrate that L-ficolin or FCNA plays an important 
role in conferring protection to mice infected with the 
influenza A virus.

  Materials and Methods 

 Viruses, Plasmids and Animals 
 The influenza A viruses H5N1 A/chicken/Hubei/489/2004 

(GeneBank Accession No. AY770078), H1N1 A/Yamagata/120/86 
and H1N1 A/PR/8/34  [18–20]  were used in this study. The condi-
tions for infection of embryonated hen eggs and purification of 
the viruses have been described by Zhang et al.  [20] . Eukaryotic 
expression plasmids pCMVTag2B, pVAX-1 and pcDNA3.1 (–)/
Myc-His A were purchased from Invitrogen, and the prokaryotic 
expression plasmid pGEX-KG was purchased from Amersham 
Biosciences. All DNA preparations were produced using endo-
toxin-free purification columns (Qiagen). Eight-week-old male 
BALB/c and C57BL/6 mice were purchased from the Center of 
Animal Experiments of the Wuhan University, China. The ani-
mal protocols were performed in compliance with all guidelines 
and were approved by the Institutional Animal Care and Use 
Committee of the Wuhan University.

  Recombinant Plasmid Construction 
 The human L-ficolin cDNA was amplified and subcloned in 

frame into pGEX-KG and pcDNA3.1 (–)/Myc-His A, respectively 
 [21, 22] . The pVAX-1-FCNA plasmid construction was described 
by Fujimori et al.  [23] . The cDNAs encoding HA and NA were 
amplified from influenza A virus H5N1 A/chicken/Hubei/
489/2004 by RT-PCR, and then subcloned into pCMV-Tag or 
pGEX-KG.

  Western Blot Analysis 
 Muscle and lung tissue from the injected mice were harvested 

0, 4, 7 and 10 days after injection. The harvested tissues were ho-
mogenized, and L-ficolin was detected via Western blot analysis 
using anti-L-ficolin monoclonal antibody (mAb) GN5 (Hycult 
Biotechnology). Horseradish peroxidase (HRP)-conjugated goat 
anti-mouse IgG was used as a secondary Ab.

  Measurement of L-Ficolin Concentrations in Mouse Serum 
 The sandwich enzyme-linked immunosorbent assay (ELISA) 

method was used to measure the concentrations of mouse serum 
L-ficolin according to the methods described in a previous publi-
cation  [22] . Briefly, 96-well ELISA plates were coated with 100  � l 
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of rabbit anti-GST-L-ficolin polyclonal antibody. After incuba-
tion at room temperature (RT) for 1 h, the solution was removed 
and the plates were rinsed. After washing three times with 0.2% 
Tween-20 in PBS, 100  � l of mouse serum was added and the plates 
were incubated at 37   °   C for 2 h. The plates were washed three 
times, and the nonspecific binding sites on the ELISA plates were 
blocked with 5% BSA and incubated overnight at 4   °   C. Mouse 
monoclonal anti-human L-ficolin GN5 (1:   1,000 dilution; HyCult 
Biotechnology) was added to each well and incubated at 37   °   C for 
1 h. After washing three times, 100  � l of labeled HRP-conjugated 
goat anti-mouse IgG (1:   1,000 dilution) were added. Color devel-
opment was achieved by adding 100  � l/well of ready-to-use tetra-
methylbenzidine chromogen substrate (Sigma), and the optical 
density (OD) at 450 nm was measured using an ELISA reader.

  Influenza Virus Challenge 
 Male BALB/C, C57BL/6 or FCNA knockout (KO) mice (7–8 

weeks old) were randomly divided into groups, and pcDNA3.1A-
L-ficolin, pcDNA3.1A, pVAX-1-FCNA or pVAX-1 plasmid was in-
tramuscularly injected into the mice (20  � g per mouse) using a 
gene gun with an Electric Square Porator (Scientz Biotechnology) 
 [24] . Each injection (125  � l) consisted of a 1:   4 mixture of ametho-
caine (20 mg/ml) and the respective plasmids (20  � g/ml). The 
quadriceps femoris muscle was stimulated using an electrode to 
allow for simultaneous DNA injection and electrotransfer at the 
same site. Two days after plasmid injection, the mice were submit-
ted to intranasal infection with either lethal [1  !  10 5  50% tissue 
culture infective doses (TCID 50 )] or sublethal (5  !  10 4  TCID 50 ) 
doses of influenza A virus (H1N1 A/PR/8/34) or 2.8  !  10 5  TCID 50  
of influenza A virus (H1N1 A/Yamagata/120/86)  [25] .

  The lethal dose groups were used for observing survival rates, 
whereas the sublethal dose groups were used for virus replication 
and histological analysis, and mouse lungs were harvested at dif-
ferent times after the infection.

  Hematoxylin and eosin (HE)-stained lung tissue sections were 
examined light-microscopically  [26]  for evidence of injury in a 
blinded manner by a skilled pathologist. The sections were evalu-
ated for overall cellularity and consolidation, alveolar wall thick-
ness, amount of edema fluid present and the number of neutro-
phils and macrophages infiltrating the airways (alveoli and bron-
chioles) and interstitium. Each parameter was scored subjectively 
from 0 to 5: 0 was considered normal or unaffected, and 5 indi-
cated that there was a marked change  [27] . Average values for the 
parameters were added to obtain the final inflammatory score for 
each group. 

 Preparation of FCNA-KO Mice 
 A construct targeting gene disruption (the FcnA gene) was 

produced by homologous recombination. The targeted ES cells 
(129SVJ) were implanted into mouse C57BL/6J blastocysts to gen-
erate chimeric mice. Chimeras were mated with wild-type 
C57BL/6J to produce heterozygous mice. Heterozygous mice were 
screened using PCR and Southern blot hybridization, and were 
backcrossed with C57BL/6J. Homozygous mice (FcnA–/–) were 
produced by the intercross of F2 heterozygous offspring. FcnA–/– 
was identified by PCR-based genotyping using tail DNA. PCR 
was performed using the primer set 5 � -TACTATTTAGCCC-
TGACTGACTTGA-3 �  (U1971) and 5 � -TCTCCACCTTCCTC-
TTCCTCCTCTA-3 �  (L3865) for the wild-type allele, and another 
set, U1971 and 5 � -CATCGCCTTCTATCGCCTTCTTGACGA-3 �  

(NeoU1), for the mutant allele. All DNA recombination and ani-
mal studies were conducted in accordance with the guidelines of 
the Fukushima Medical University and the Osaka University.

  Virus Capture Assay 
 For this vial assay, 100  � l of influenza virus stock (800 HA 

units determined by the hemagglutination assay) were coated 
onto 96-well plates and incubation was performed at 4   °   C over-
night. After washing, recombinant GST-L-ficolin and GST were 
added separately to the wells. After incubation at 37   °   C for 1 h, the 
plate was washed and monoclonal anti-L-ficolin antibody GN5 
(Hycult Biotechnology) at a 1/2,000 dilution was added. HRP-
labeled conjugate (rabbit anti-mouse IgG) was added at 1/2,000 
dilution. Tetramethylbenzidine solution was added for color de-
velopment, and absorbance was read at 450 nm. The binding abil-
ity of L-ficolin to viruses was determined as a ratio: OD value 
(GST-L-ficolin + influenza virus)/OD value (GST + influenza vi-
rus).

  Neutralization Assay 
 In order to measure the virus-neutralizing activity, L-ficolin 

was serially diluted with DMEM and then mixed with 100  � l of 
virus (H1N1 A/Yamagata/120/86) suspension (1.4  !  10 5  TCID 50 ). 
Prior to inoculating into Madin-Darby canine kidney (MDCK) 
cells, the mixtures were incubated for 30 min at RT. After 2 h of 
incubation, the supernatants were discarded and MDCK cells 
were washed with DMEM. After 48 h of incubation, the infected 
MDCK cells were collected and subjected to fluorescence quanti-
tative (FQ)-RT-PCR to detect the expression of the M gene of the 
H1N1 virus. GAPDH was used as the reference gene. To further 
identify the anti-H1N1 activities of L-ficolin, different concentra-
tions of mouse monoclonal anti-human L-ficolin GN5 (HyCult 
Biotechnology) were added and incubated with 120  �  M  L-ficolin. 
Then the L-ficolin/mAb mixture was incubated with 100  � l of 
virus suspension for 30 min at RT before inoculating into MDCK 
cells. The neutralization activity by L-ficolin was determined in 
terms of inhibition (%): (M gene copies in the absence of L-fico-
lin – M gene copies with L-ficolin)/M gene copies in the absence 
of L-ficolin.

  Stable Transfections 
 Mammalian CT26 colon tumor cells in 6-well plates were 

transfected with 2  � g of eukaryotic expression plasmid pCMV-
Tag2B-HA or pCMV-Tag2B-NA, using Lipofectamine TM  2000 
(Invitrogen) in accordance with the manufacturer’s instructions. 
For stable transfections, G418 was added to the cell culture media 
at a final concentration of 0.6 mg/ml 48 h after transfection. The 
culture medium was exchanged every 2 days. After 2 weeks of se-
lection, HA- or NA-expressing cell clones were obtained.

  Expression Assay Using Flow Cytometry 
 Individual stably transfected CT26 cell clones were analyzed 

for HA and NA expression. A culture of 1  !  10 5  cells/ml was in-
cubated at RT with mouse anti-flag antibodies (Invitrogen) for 30 
min. The cells were washed three times in PBS to remove un-
bound antibodies, followed by the addition of FITC-labeled anti-
mouse IgG, and cells were again incubated for an additional 30 
min at RT. The stained cells were washed again three times and 
analyzed using a Beckman Coulter EPICS ALTRA II flow cytom-
eter. All experiments were performed in triplicate.
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  GST-Pull-Down Assay 
 Lysates of HA-CT26 cells or NA-CT26 cells with the Sepha-

rose 4B-GST-L-ficolin complex were incubated at 37   °   C for 30 
min, followed by washing three times in PBS. SDS loading dye 
(2%) was added, and the samples were boiled at 100   °   C for 5 min. 
The supernatant was used to perform SDS-PAGE and Western 
blot analysis using anti-flag mAb, anti-HA mAb and anti-NA 
mAb (Sigma-Aldrich).

  Hemagglutination Assay 
 Hemagglutination activity  [28, 29]  was expressed as an HA 

titer. Mice lungs were homogenized in 1  � l 0.9% NaCl for every 
0.1 g lung tissue. The homogenate was then centrifuged at 5,000 
rpm for 4 min, and the supernatants were collected into new tubes 
and serially diluted with normal saline into a 96-well plate. Virus 
stock was used as the positive control, and normal saline was used 
as the negative control. Chicken erythrocytes were added to each 
well, and the incubation was conducted at RT for 40 min. The 
wells were visually inspected for the presence or absence of HA. 
All assays were performed in triplicate.

  Plaque Assay 
 The plaque assay was used to determine the lung viral titer and 

TCID 50 . In this assay, a total of 100  � l of a serially diluted lung 
homogenate sample were added to a confluent monolayer of 
MDCK cells in 24-well plates and incubated at 37   °   C for 1 h. After 
virus adsorption, the cells were washed with serum-free DMEM 
and the wells were overlaid with 1 ml/well of DMEM (prepared 
from a 2 !  stock) containing 1.95% w/v agarose and 0.0005% 
trypsin. After incubation at 37   °   C in 5% CO 2  for 5–7 days, cells 
were fixed, and then the agar overlays were removed. The fixed 
monolayers were stained with 0.1% crystal violet to visualize the 
plaques. The virus titer was calculated as the number of TCID 50  
per lung and was expressed as the mean  8  SEM for each mouse 
group.

  RNA Extraction and cDNA Synthesis 
 Total RNA was extracted using the Trizol-chloroform-based 

method  [30] , and cDNA was synthesized using a RevertAid TM  
first-strand synthesis kit (Fermentas Life Science), in accordance 
with the manufacturer’s instructions. The retrotranscription step 
was performed for 60 min at 42   °   C in a final volume of 20  � l con-
taining the following: 300 pg of total RNA, 200 U RevertAid -
M-MuLV reverse transcriptase, 20 U RiboLock TM  RNase inhibi-
tor, 0.2 g of random hexamer primer and the deoxyribonucleotide 
mix (final concentration of 1 m M  for each deoxyribonucleotide).

  FQ-RT-PCR 
 FQ-RT-PCR was performed using a Rotor-Gene TM  3000 sys-

tem (Corbett Research) with the Maxima TM  SYBR Green qPCR 
master mix (2 ! ) kit (Fermentas Life Science). Triplicate samples 
were analyzed according to the methods described by Gravelat et 
al.  [31] . Influenza virus was quantified using a forward primer 
with the sequence 5 � -CATGGAATGGCTAAAGACAAGACC-3 �  
and a reverse primer with the sequence 5 � -AAGTGCACC-
AGCAGAATAACTGAG-3 �  (i.e. specific for M gene of influenza 
A viruses). The reference gene GAPDH was quantified using a 
forward primer with the sequence 5 � -ACCACAGTCCATGCC-
ATCAC-3 �  and a reverse primer with the sequence 5 � -TCCA-
CCACCCTGTTGCTGTA-3 � . Cycle conditions were 15 min at 

95   °   C, 40 cycles of 15 s at 95   °   C, 30 s at 56   °   C, 20 s at 72   °   C and
7 min at 72   °   C. Single PCR products were confirmed with the heat 
dissociation protocol at the end of the PCR cycles.

  Complement C4 Activation and Deposition Assay 
 Lectin pathway activation was quantified using the C4 deposi-

tion assay as previously described  [22] . MBL and ficolin-depleted 
serum was generated by incubating fresh healthy human donor 
serum with GlcNAc-agarose beads (Sigma). C4c deposition on 
the virus-coated plates was measured using the following meth-
od: 96-well microtiter plates were coated with 2  !  10 4  TCID 50  of 
H1N1 virus in PBS buffer and were incubated overnight at 4   °   C. 
The plates were blocked with TBS buffer (10 m M  Tris-Cl, 140 m M  
NaCl, 5 m M  CaCl 2 , pH 7.4) containing 0.1% BSA at 37   °   C for 1 h 
and were subsequently washed twice in TBS/Tween-20 buffer 
(TBS, 0.05% Tween-20). After washing, the concentrations of pu-
rified recombinant L-ficolin protein and 20% human serum di-
luted in TBS buffer containing 0.1% BSA were added and incu-
bated in buffer with TBS-T. After incubation at 4   °   C overnight, the 
plates were washed thoroughly with PBS; 0.1 g of purified human 
C4 protein (Diagnostic Biosystems) was then added, and the 
plates were incubated at 37   °   C for 1.5 h. The plates were washed 
again before adding FITC-conjugated rabbit anti human C4c (Di-
agnostic Biosystems; 1:   100 dilution) and incubating at RT for 30 
min. After washing with PBS, absorbance was measured at 485 
nm.

  Statistical Analysis 
 The data were analyzed with SPSS software. Experimental 

data were analyzed by ANOVA. Differences were considered to be 
statistically significant for p = 0.05.

  Results 

 Human L-Ficolin Protected Mice from Influenza A 
Infection  
    To demonstrate the roles of ficolin during influenza A 

virus infection in vivo, human L-ficolin cDNA was am-
plified and subcloned in frame into pcDNA3.1 (–)/Myc-
His A and was administered intramuscularly to BABL/c 
mice by electroporation followed by an H1N1 virus (A/
Yamagata/120/86) challenge. Before infection with the 
virus, we detected exogenous L-ficolin expression in 
BABL/c mice. As shown in  figure 1 a, 4 and 7 days after 
plasmid injection, L-ficolin expression was detected in 
mouse muscle tissue. We also determined that the L-fico-
lin molecule was present in mouse lung tissue and serum 
after the injection of the L-ficolin-encoding plasmid 
( fig. 1 b, c). L-ficolin was detected both in lung tissue and 
in serum starting 4 days after the plasmid injection. 
These data suggest that injection of the L-ficolin plasmid 
induced L-ficolin expression at the injection site and that 
the L-ficolin molecule was released into the circulation 
and lung tissue.
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  A/Yamagata/120/86 is a variant of the A/PR/8/34 
(H1N1) virus and can cause infection in the mouse  [18] . 
The hemagglutination assay was used for measuring HA 
titers based on their ability to attach to molecules present 
on the surface of red blood cells. After infection with the 

A/Yamagata/120/86 virus (2.8  !  10 5  TCID 50 /mouse) 
 [18] , the HA titers of lung homogenates in the L-ficolin 
treatment group were significantly decreased compared 
with those injected with the empty vector ( fig. 1 d,  *  p  !  
0.05). All mice appeared hunched and had lost their ap-
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  Fig. 1.  L-ficolin protects BABL/c mice against H1N1 (A/Yamaga-
ta/120/86) virus infection. Western blot analysis of L-ficolin in 
mouse muscle ( a ) and lung tissue ( b ) using the anti-L-ficolin mAb 
GN5.  a  BALB/c mice were injected with pcDNA3.1A-L-ficolin 
(lanes 1, 3 and 5) or control vector pcDNA3.1A (lanes 2, 4 and 6; 
10  � g DNA per mouse) through intramuscular electroporation. 
Muscle was harvested from each mouse 0, 4 or 7 days after injec-
tion.  b  BALB/c mice were injected with pcDNA3.1A-L-ficolin and 
mouse lung was harvested from each mouse 0, 4, 7 or 10 days after 
injection.  c  L-ficolin concentrations in sera taken from mice in-

jected with pcDNA3.1A-L-ficolin ( *  p  !  0.05, day 0 group vs. oth-
er groups).  d  Viral hemagglutination assay of mouse lung tissue 
homogenates. Hemagglutination activity was expressed as a titer, 
i.e. the reciprocal of the highest dilution showing complete agglu-
tination ( *  p  !  0.05, L-ficolin group vs. pcDNA3.1A group). Data 
are shown as the mean  8  SEM of at least 3 independent experi-
ments.  e  A graph of the body weights of infected mice after the 
administration of L-ficolin plasmid treatment.  f–i  Histopatholog-
ic analyses of lung tissue. Lung tissue sections were analyzed us-
ing HE and were evaluated by light microscopy ( ! 400). 
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petite (classic flu-like symptoms) during the first 7 days 
after the challenge, but all had survived 10 days after the 
virus challenge. The A/Yamagata/120/86 virus did not 
cause severe disease in the mice, probably because hu-
mans are its natural host, but it did produce temporary 
flu-like symptoms. Loss of body weight did not occur in 
L-ficolin-treated mice ( fig. 1 e), whereas body weight was 
reduced in mice that did not receive L-ficolin treatment. 
Mice without L-ficolin treatment were found to be lethar-
gic and exhibited other general disease-like symptoms, 
such as shivering (data not shown).

  Histological analysis of the lung tissue, performed 6 
days after infection, showed that the alveolar tissue of L-
ficolin-treated mice appeared to be intact with only mild 
signs of alveolitis, a small amount of lymphocyte infiltra-
tion and a few red blood cells present in connective tissue. 
The mean pathology score was 2.3 ( fig. 1 g). In contrast, 
in the lungs of H1N1 virus-infected mice, multifocal, se-

vere necrotizing broncho-interstitial pneumonia that was 
almost completely covering the lobes, and severe inflam-
matory cell infiltration was observed ( fig.  1 f–i; average 
pathology score, 4.8). These data suggest that L-ficolin 
protected BABL/c mice from A/Yamagata/120/86 virus 
infection. A moderate broncho-interstitial pneumonia 
was seen in the empty plasmid-treated group that was 
likely due to the empty vector injection nonspecifically 
enhancing the hosts’ immunity against infection ( fig. 1 h; 
average pathology score, 3.7). In other studies, the control 
DNA vector pcDNA3.1 also elicited a low level of inflam-
matory response  [32] . Moreover, studies conducted by Ma 
et al.  [24]  suggested that the pcDNA3.1 injection alone 
could introduce a certain level of interferon- � , which
is consistent with our results. We speculate that the 
pcDNA3.1A vehicle may contain bacterial DNA or a 
small amount of lipopolysaccharide/endotoxin. Bacterial 
DNA with a CpG structure and bacterial lipopolysaccha-
rides, which are TLR9 and TLR4 ligands of mammalian 
antigen-presenting cells, respectively, could potentially 
stimulate the production of inflammatory factors.

  Human L-Ficolin and Mouse FCNA Protect
FCNA-KO Mice from Influenza A Virus Infection 
 To further assess the protective effects of L-ficolin 

against influenza A virus infection in FCNA-KO mice, 
both human L-ficolin and mouse FCNA were used.

  Before virus infection, 4 and 7 days after the intramus-
cular administration of pcDNA3.1-L-ficolin or pVAX-1-
FCNA plasmids into mice using electroporation, the ex-
pression of both L-ficolin and FCNA was evaluated in 
mouse muscle tissue ( fig. 2 a). After the lethal infection 
with influenza virus H1N1 (A/PR/8/34), the FCNA-KO 
mice were more susceptible than the C57BL/6 (wild-type) 
mice ( fig. 2 b). Four days after the infection, 87.5 or 100% 
of the FCNA-KO mice that were injected with L-ficolin 
or FCNA survived, whereas only 50% of the FCNA-KO 
mice that were injected with PBS alone or empty vector 
survived ( fig.  2 b). Six days after infection, 50% of the
FCNA-KO mice that were injected with L-ficolin and 
FCNA survived, whereas all of the FCNA-KO mice that 
were injected with PBS alone or empty vector died 
( fig. 2 b). The L-ficolin and FCNA injection groups exhib-
ited a prolonged survival time (T50) that was 2 days lon-
ger than that of the control or empty vector injection 
groups ( fig.  2 b). In a virus challenge using a sublethal 
dose, the administration of L-ficolin or FCNA plasmids 
significantly reduced the expression of viral RNA ( fig. 2 c) 
and the HA titer ( fig. 2 d) in FCNA-KO mice 5 days after 
infection. The TCID 50  of mouse lung tissue 3 and 5 days 

  Fig. 2.  L-ficolin protects FCNA-KO mice against H1N1 (A/
PR/8/34) virus infection.  a  Western blot analysis of L-ficolin or 
FCNA expression in the muscle of FCNA-KO mice using mono-
clonal anti-L-ficolin antibody GN5 or polyclonal anti-FCNA an-
tibody. Male FCNA-KO mice in a C57BL/6 background (8 weeks 
old) were injected with pcDNA3.1A-L-ficolin (lanes 1, 3 and 5), 
pcDNA3.1A (lanes 2, 4 and 6), pVAX-1-FCNA (lanes 7, 9 and 11) 
or pVAX-1 (lanes 8, 10 and 12; 10  � g DNA/mouse) through intra-
muscular electroporation. Muscle tissue was harvested from each 
mouse 0, 4 or 7 days after injection.  b  Survival rate of mice in-
fected with H1N1 A/PR/8/34 ( *  p  !  0.05, vs. FCNA-KO + PBS and 
FCNA-KO + pVAX-1). The Kaplan-Meier method was used to plot 
survival curves for each infected group of mice. A Breslow test was 
used for statistical analysis of the survival curves. Differences 
were considered to be statistically significant for p = 0.05.  c  Real-
time RT-PCR analysis of viral RNA expression ( *  p  !  0.05, FCNA-
KO + L-ficolin or FCNA-KO + FCNA group vs. other FCNA-KO 
control groups). Data are shown as the mean  8  SEM of at least 3 
independent experiments.  d  Viral hemagglutination assays from 
mouse lung tissue homogenates 3 days after infection. Hemag-
glutination activity was expressed as HA titer, i.e. the reciprocal 
of the highest dilution showing complete agglutination ( * p  !  0.05, 
FCNA-KO + L-ficolin or FCNA-KO + FCNA group vs. other
FCNA-KO control groups). Data are shown as the mean  8  SEM 
of at least 3 independent experiments.  e  TCID 50  of mouse lung 
tissue homogenates 3 and 5 days after infection ( *  p  !  0.05, FCNA-
KO + L-ficolin or FCNA-KO + FCNA group vs. other FCNA-KO 
control groups). The plaque assay was used to determine the lung 
viral titer and TCID 50 .  f  Histopathological analysis of lung tissue. 
The lung tissue sections were stained with HE and light-micro-
scopically evaluated ( ! 400). 
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after infection also showed less virus replication in L-fi-
colin- and FCNA-treated FCNA-KO mice compared 
with PBS-treated or empty vector-treated FCNA-KO 
mice ( fig. 2 e). Five days after infection, histological anal-
ysis of the lung tissue showed severe inflammation and 
significant lymphocyte infiltration in the FCNA-KO 
mice (average pathology score, 4.6), whereas mild in-
flammation and less lymphocyte infiltration occurred in 
the FCNA-KO mice administered the L-ficolin plasmid 
(average pathology score, 3.6) or its mouse analogue 
(FCNA plasmid;  fig.  2 f; average pathology score, 3.3).
Our data suggest that the administration of L-ficolin
and its analogue (FCNA plasmid) can, to some extent, 
reverse the pathology of influenza A virus infection in 
FCNA-KO mice.

  Recombinant Human L-Ficolin Bound to Influenza A 
Virus 
 To assess whether recombinant L-ficolin can bind

to influenza virus particles, a virus capture assay was
employed. Virus samples, including H1N1 (A/Yamaga-
ta/120/86), H1N1 (A/PR/8/34) and H5N1 (A/chicken/
Hubei/489/2004), were coated onto ELISA plates. Re-
combinant GST-L-ficolin or GST alone was added to the 
plates, and incubation was followed by extensive washing 
to remove any unbound protein. The bound viral parti-
cles were revealed using a HRP-labeled anti-L-ficolin 
mAb GN5, as described in the Materials and Methods. 
In order to minimize the interference from different 
ELISA plates, the binding ability of L-ficolin to the vi-
ruses was determined as a ratio: OD value (GST-L-ficolin 
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  Fig. 3.  Recombinant L-ficolin bound to influenza virus particles. 
Influenza viruses (A/chicken/Hubei/489/2004, A/Yamagata/
120/86 and A/PR/8/34) were coated onto 96-well plates, and re-
combinant GST-L-ficolin or GST was added. The binding ability 
of L-ficolin to the viruses was determined as a ratio: OD value 
(GST-L-ficolin + influenza virus)/OD value (GST + influenza vi-
rus).  a  Recombinant L-ficolin bound to H1N1 A/Yamagata/120/86 
virus (   *  *  p  !  0.01,    *  p  !  0.05, 0  �  M  GST-L-ficolin group vs. various 
GST-L-ficolin concentration groups).    b  Recombinant L-ficolin 
bound to H5N1 A/chicken/Hubei/489/2004 virus ( *  *   p  !  0.01,

       *  p  !  0.05, 0  �  M  GST-L-ficolin group vs. various L-ficolin-GST 
concentration groups).    c  Recombinant L-ficolin bound to H1N1 
A/PR/8/34 virus ( *  *  p  !  0.01,  *  p  !  0.05, 0  �  M  GST-L-ficolin group 
vs. various GST-L-ficolin concentration groups).  d  Effects of 
GlcNAc and mannan on the binding between recombinant L-fi-
colin-GST and H1N1 A/PR/8/34 virus. 0.28 m M  recombinant 
GST-L-ficolin or GST were added, along with GlcNAc or mannan, 
to a plate coated with H1N1 A/PR/8/34 virus. All data are shown 
as the mean  8  SEM of at least 3 independent experiments. 
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+ influenza virus)/OD value (GST + influenza virus). We 
found that GST-L-ficolin protein could bind significant-
ly to 2 strains of H1N1 and to 1 strain of H5N1 virus 
when compared with the GST control groups ( *  p  !  0.05, 
 *  *  p  !  0.01,  fig. 3 a–c). Increasing the amount of L-ficolin 
added to the plates resulted in an increase in the amount 
of L-ficolin bound to the virus-coated plates. Next, we 
attempted to disrupt these binding reactions using 
GlcNAc and mannan. The binding between GST-L-fico-
lin and H1N1 A/PR/8/34 was competitively inhibited by 
both GlcNAc and mannan ( fig. 3 d), and the inhibition 
was proportional to the concentration of these added 
sugars. This result is consistent with other reports that 
show L-ficolin binds to GlcNAc more strongly than it 
binds to mannan  [33] . These data show that the L-ficolin 
can bind to different strains of influenza A virus, sug-
gesting that L-ficolin may act as an innate immune mol-

ecule that recognizes the GlcNAc carbohydrate structure 
of the surface glycoproteins HA and NA of the influenza 
virus.

  Human L-Ficolin Inhibits Influenza A Virus Entry 
into MDCK Cells 
 To better understand the contribution of L-ficolin to 

virus entry, we used L-ficolin protein to interfere with 
H1N1 infection in vitro, and measured the neutralization 
activity of L-ficolin. MDCK cells were infected with 
H1N1 virus in the presence of L-ficolin, and FQ-RT-PCR 
was used to detect expression of the M gene of the H1N1 
virus. As shown in  figure 4 a, H1N1 RNA replication was 
reduced after L-ficolin treatment compared with the GST 
control. A higher inhibition rate was observed when the 
L-ficolin concentration was increased. Further, the neu-
tralization effects of L-ficolin could be reversed by adding 
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  Fig. 4.  Neutralization of H1N1 A/Yamagata/120/86 infectivity.
 a  Virus was incubated with L-ficolin for 30 min. The mixture was 
added to MDCK cells. The infected MDCK cells were collected 
for FQ-RT-PCR to detect the expression of the M gene of the 
H1N1 virus. The neutralization activity of L-ficolin was deter-
mined by percent inhibition: (M gene copies in the absence of L-
ficolin – M gene copies with L-ficolin)/M gene copies in the ab-
sence of L-ficolin (   *  p    !  0.05, L-ficolin + H1N1 virus vs. control 

group). This experiment was repeated 3 times.  b  FQ-RT-PCR 
analysis showed that neutralization effects of L-ficolin were re-
versed in cell culture by adding different doses of anti-L-ficolin 
mAb. FQ-RT-PCR ( c ) and flow-cytometric ( d ) analysis showed 
that L-ficolin did not bind to other elements or molecules on the 
cell surface and inhibition effects of L-ficolin on viral infection 
were not due to the binding of L-ficolin to MDCK cells. FITC 
anti-GST mAb was used in the flow-cytometric analysis.                                                         
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different mAb doses against L-ficolin ( fig. 4 b). In addi-
tion, we incubated MDCK cells with L-ficolin recombi-
nant protein, followed by performing the infections after 
having removed the L-ficolin from the media, and we ob-
served that this treatment had no inhibition effects on the 
virus infection ( fig.  4 c). Flow-cytometric analysis also 
showed that different doses of L-ficolin did not bind to 
MDCK cells ( fig. 4 d). These data indicate that there are 
no interactions between L-ficolin and other elements or 
molecules on the cellular surface, and that L-ficolin can 
neutralize the influenza A virus infection and inhibit in-
fluenza A virus entry into MDCK cells.

  Recombinant Human L-Ficolin Specifically Recognizes 
and Binds to HA and NA 
 To explore the possible interaction between HA or NA 

proteins and L-ficolin, cDNAs encoding HA and NA 
were amplified from influenza A virus H5N1 A/chicken/
Hubei/489/2004 using RT-PCR and were subcloned into 
the eukaryotic expression vectors, pCMV-Tag or pGEX-
KG. The resulting recombinant pCMV-Tag-HA and
pCMV-Tag-NA plasmids were transfected into CT26 
cells using G418 to select for stable transfectants. We 
found that the surface expression of HA and NA in trans-
fected CT26 cells was 78.6 and 48.4%, respectively, while 
the background fluorescence in control cells was only 
12.6% ( fig.  5 a, b). Recombinant GST-L-ficolin was ex-

pressed in  Escherichia coli  under the induction of IPTG. 
The GST-L-ficolin protein was purified using glutathione 
Sepharose 4B, and its identity was confirmed using SDS-
PAGE and Western blotting with an anti-GST antibody. 
The results showed that GST-L-ficolin and control GST 
had molecular weights of approximately 64 and 29 kDa, 
respectively ( fig. 5 c), which is consistent with the predict-
ed sizes.

  A GST pull-down assay was performed to further 
demonstrate the physical association between L-ficolin 
and HA or NA. The HA-CT26 and NA-CT26 cell lysates 
were incubated with purified GST-L-ficolin, and com-
plexes containing GST-L-ficolin-HA or GST-L-ficolin-
NA were isolated using glutathione Sepharose 4B beads 
and analyzed using SDS-PAGE and Western blotting. 
The results confirmed that L-ficolin recognized and 
bound to HA and NA ( fig. 5 d). There was no binding de-
tected between L-ficolin and the control CT26 cells ly-
sates ( fig. 5 d).

  Binding of L-Ficolin to Influenza A Virus Triggers the 
Lectin Complement Pathway 
 We assessed whether the binding of L-ficolin to the 

influenza A virus in the presence of MBL-associated ser-
ine proteases from serum leads to the activation of the 
lectin pathway and C4 deposition. Activation of the lectin 
pathway was measured using C4 deposition assays (see 
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  Fig. 5.  Binding assay between L-ficolin 
and HA or NA. Flow-cytometric analyses 
of HA expression in HA-CT26 ( a ) and NA 
expression in NA-CT26 ( b ) using anti-flag 
antibody.  c  Western blot analysis of re-
combinant GST-L-ficolin fusion proteins 
using anti-GST antibody. Lane 1 = GST-L-
ficolin; lane 2 = GST.  d  Binding assay be-
tween L-ficolin and HA or NA by GST 
pull-down and Western blot analysis us-
ing anti-HA, anti-NA and anti-L-ficolin 
mAbs.                  � -Actin, a housekeeping gene with 
a constant expression, was used as an in-
ternal control.                                                   
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Materials and Methods) in which the classical comple-
ment pathway was blocked by the use of 1  M  NaCl. The 
high ionic strength of this buffer blocks the binding of 
C1q to immune complexes and disrupts the C1 complex. 
C4 is not involved in the alternative complement path-
way. As shown in  figure 6 , in the presence of serum, high-
er levels of C4c deposition were observed after mixing 
L-ficolin with the influenza virus H1N1 A/PR/8/34 and 
A/Yamagata/120/86, when compared with the non-virus 
control group. Activation of the lectin pathway was L-fi-
colin dose dependent ( fig. 6 ). The data indicate that the 
binding of L-ficolin to influenza A virus triggers the lec-
tin complement pathway.

  Discussion 

 Influenza A viruses express two surface glycoproteins, 
HA and NA, which both play a critical role in the ability 
of the virus to replicate in susceptible target cells. HA is 
an envelope glycoprotein that mediates the attachment of 
virions to the cell surface and the fusion of the viral and 
endosomal membranes, thereby delivering the viral nu-
cleocapsid into the cytoplasm to initiate viral replication 
 [34] . The NA protein acts to cleave terminal N-acetyl 
neuraminic acid moieties from cell surface oligosaccha-
rides and aids in the ability of newly synthesized virions 

to detach from infected cells and spread to neighboring 
target cells  [35] . HA and NA have also been shown to 
serve as targets for recognition by C-type lectins of the 
collectin family, including serum MBL, bovine serum 
proteins conglutinin and collectin-43 and lung surfac-
tant proteins (SP) A and SP-D  [36] . Our results show that 
L-ficolin recognizes and binds to HA and NA glycopro-
teins ( fig. 5 ). We also demonstrated that L-ficolin bound 
to both H1N1 and H5N1 in vitro by ELISA analysis 
( fig.  3 a, c). We speculated that L-ficolin might bind to 
these differently glycosylated proteins from different 
strains (both H1 and H5). During the influenza chal-
lenge, both wild-type mice and KO mice that were in-
jected with the L-ficolin plasmid had lower HA titers or 
less viral gene expression in lung homogenates and less 
pathological changes compared with other groups. These 
data demonstrated that L-ficolin protected the mice 
against influenza A virus infection. We speculate that fol-
lowing the injection of the L-ficolin plasmid, the L-ficolin 
molecule was produced and secreted into the circulation 
where it acted as an anti-influenza agent. The recombi-
nant L-ficolin protein could bind to influenza A virus 
H1N1 A/Yamagata/120/86, H1N1 A/PR/8/34 and H5N1 
A/chicken/Hubei/489/2004, and this binding could be 
disrupted by GlcNAc, and to a lesser extent by mannan, 
in vitro. More importantly, we are the first to demon-
strate that in the presence of the influenza A virus, L-fi-
colin recognizes and binds to the envelope glycoproteins 
HA and NA directly and can trigger the lectin comple-
ment pathway. We propose that L-ficolin binds to HA 
and NA proteins to block virion entry and activates the 
lectin complement pathway, resulting in virus or virus-
infected cell lysis.

  Our ELISA and Western analyses showed that the L-
ficolin concentration in the lung in the mouse model 
( fig. 1 ) was much lower than the 120  �  M  needed in vitro 
for 30% inhibition or neutralization in cell culture 
( fig. 4 a). We speculate that the mechanisms inducing the 
anti-influenza response by L-ficolin may be more com-
plicated in neutralization assays in vivo than in vitro. 
One possibility is that L-ficolin in vivo not only can neu-
tralize virus infection but also can induce the activation 
of lectin complement in vivo, or might also activate 
phagocytosis to the virus-infected cells. Another possi-
bility is that due to probable impurity of in vitro prepared 
L-ficolin recombinant protein, L-ficolin recombinant 
protein effects might be lower than its eukaryotic expres-
sion plasmid in vivo.

  Leikina et al.  [37]  showed that carbohydrate-binding 
molecules inhibited viral fusion and entry by crosslink-
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  Fig. 6.  Binding of L-ficolin to influenza A virus leads to the acti-
vation of the complement lectin pathway.                                                                             
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