Show simple item record

dc.contributor.authorMakamba, Babington
dc.contributor.authorMunywoki, Michael M.
dc.date.accessioned2024-05-28T09:18:20Z
dc.date.available2024-05-28T09:18:20Z
dc.date.issued2019
dc.identifier.citationMakamba, B., & Munywoki, M. M. (2019). Computing fuzzy subgroups of some special cyclic groups. Communications of the Korean Mathematical Society, 34(4), 1049-1067.en_US
dc.identifier.issn2234-3024
dc.identifier.urihttp://ir.tum.ac.ke/handle/123456789/17600
dc.descriptionhttps://doi.org/10.4134/CKMS.c180341en_US
dc.description.abstractIn this paper, we discuss the number of distinct fuzzy subgroups of the group Zpn × Zqm × Zr, m = 1, 2, 3 where p, q, r are distinct primes for any n ∈ Z + using the criss-cut method that was proposed by Murali and Makamba in their study of distinct fuzzy subgroups. The criss-cut method first establishes all the maximal chains of the subgroups of a group G and then counts the distinct fuzzy subgroups contributed by each chain. In this paper, all the formulae for calculating the number of these distinct fuzzy subgroups are given in polynomial form.en_US
dc.description.sponsorshipTECHNICAL UNIVERSITY OF MOMBASAen_US
dc.language.isoenen_US
dc.publisherCommunications of the Korean Mathematical Societyen_US
dc.subjectmaximal chainen_US
dc.subjectequivalenceen_US
dc.subjectfuzzy subgroupsen_US
dc.titleCOMPUTING FUZZY SUBGROUPS OF SOME SPECIAL CYCLIC GROUPSen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record