• Login
    View Item 
    •   Repository Home
    • Journal Articles
    • Department of Pure and Applied Sciences
    • View Item
    •   Repository Home
    • Journal Articles
    • Department of Pure and Applied Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Characterization of temperature and light effects on the defense response phenotypes associated with the maize Rp1-D21 autoactive resistance gene

    Thumbnail
    View/Open
    Dr Cromwell and Adisu 2013.pdf (2.170Mb)
    Date
    2013
    Author
    Adisu Negeri
    Guan-Feng Wang
    Larissa Benavente
    Cromwell M Kibiti
    Vijay Chaikam
    Guri Johal
    Peter Balint-Kurti
    Metadata
    Show full item record
    Abstract
    Background: Rp1 is a complex locus of maize, which carries a set of genes controlling race-specific resistance to the common rust fungus, Puccinia sorghi. The resistance response includes the “Hypersensitive response” (HR), a rapid response triggered by a pathogen recognition event that includes localized cell death at the point of pathogen penetration and the induction of pathogenesis associated genes. The Rp1-D21gene is an autoactive allelic variant at the Rp1 locus, causing spontaneous activation of the HR response, in the absence of pathogenesis. Previously we have shown that the severity of the phenotype conferred by Rp1-D21 is highly dependent on genetic background. Results: In this study we show that the phenotype conferred by Rp1-D21 is highly dependent on temperature, with lower temperatures favoring the expression of the HR lesion phenotype. This temperature effect was observed in all the 14 genetic backgrounds tested. Significant interactions between the temperature effects and genetic background were observed. When plants were grown at temperatures above 30°C, the spontaneous HR phenotype conferred by Rp1-D21 was entirely suppressed. Furthermore, this phenotype could be restored or suppressed by alternately reducing and increasing the temperature appropriately. Light was also required for the expression of this phenotype. By examining the expression of genes associated with the defense response we showed that, at temperatures above 30°C, the Rp1-D21 phenotype was suppressed at both the phenotypic and molecular level. Conclusions: We have shown that the lesion phenotype conferred by maize autoactive resistance gene Rp1-D21 is temperature sensitive in a reversible manner, that the temperature-sensitivity phenotype interacts with genetic background and that the phenotype is light sensitive. This is the first detailed demonstration of this phenomenon in monocots and also the first demonstration of the interaction of this effect with genetic background. The use of temperature shifts to induce a massive and synchronous HR in plants carrying the Rp1-D21 genes will be valuable in identifying components of the defense response pathway.
    URI
    http://hdl.handle.net/123456789/6788
    Collections
    • Department of Pure and Applied Sciences

    Technical University of Mombasa copyright © 2020  University Library
    Contact Us | Send Feedback
    Maintained by  Systems Librarian
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Technical University of Mombasa copyright © 2020  University Library
    Contact Us | Send Feedback
    Maintained by  Systems Librarian